BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

331 related articles for article (PubMed ID: 29366515)

  • 1. Antinociceptive profiles and mechanisms of centrally administered oxyntomodulin in various mouse pain models.
    Park SH; Lee JR; Jang SP; Park SH; Lee HJ; Hong JW; Suh HW
    Neuropeptides; 2018 Apr; 68():7-14. PubMed ID: 29366515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antinociceptive profiles and mechanisms of orally administered coumarin in mice.
    Park SH; Sim YB; Kang YJ; Kim SS; Kim CH; Kim SJ; Lim SM; Suh HW
    Biol Pharm Bull; 2013; 36(6):925-30. PubMed ID: 23727914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The analgesic effects and mechanisms of orally administered eugenol.
    Park SH; Sim YB; Lee JK; Kim SM; Kang YJ; Jung JS; Suh HW
    Arch Pharm Res; 2011 Mar; 34(3):501-7. PubMed ID: 21547684
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antinociceptive mechanisms of orally administered decursinol in the mouse.
    Choi SS; Han KJ; Lee JK; Lee HK; Han EJ; Kim DH; Suh HW
    Life Sci; 2003 Jun; 73(4):471-85. PubMed ID: 12759141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms involved in the antinociceptive effects of orally administered oleanolic acid in the mouse.
    Park SH; Sim YB; Kang YJ; Kim SS; Kim CH; Kim SJ; Suh HW
    Arch Pharm Res; 2013 Jul; 36(7):905-11. PubMed ID: 23515934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential mechanisms mediating descending pain controls for antinociception induced by supraspinally administered endomorphin-1 and endomorphin-2 in the mouse.
    Ohsawa M; Mizoguchi H; Narita M; Chu M; Nagase H; Tseng LF
    J Pharmacol Exp Ther; 2000 Sep; 294(3):1106-11. PubMed ID: 10945866
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antinociceptive effect of nicotine in various pain models in the mouse.
    Han KJ; Choi SS; Lee JY; Lee HK; Shim EJ; Kwon MS; Seo YJ; Suh HW
    Arch Pharm Res; 2005 Feb; 28(2):209-15. PubMed ID: 15789753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antinociceptive mechanisms of platycodin D administered intracerebroventricularly in the mouse.
    Choi SS; Han EJ; Lee TH; Lee JK; Han KJ; Lee HK; Suh HW
    Planta Med; 2002 Sep; 68(9):794-8. PubMed ID: 12357389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. N-antipyrine-3, 4-dichloromaleimide, an effective cyclic imide for the treatment of chronic pain: the role of the glutamatergic system.
    Quintão NL; da Silva GF; Antonialli CS; de Campos-Buzzi F; Corrêa R; Filho VC
    Anesth Analg; 2010 Mar; 110(3):942-50. PubMed ID: 20185671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antinociceptive profiles of crude extract from roots of Angelica gigas NAKAI in various pain models.
    Choi SS; Han KJ; Lee HK; Han EJ; Suh HW
    Biol Pharm Bull; 2003 Sep; 26(9):1283-8. PubMed ID: 12951472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antinociceptive profiles and mechanisms of orally administered vanillin in the mice.
    Park SH; Sim YB; Choi SM; Seo YJ; Kwon MS; Lee JK; Suh HW
    Arch Pharm Res; 2009 Nov; 32(11):1643-9. PubMed ID: 20091280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Supraspinal NMDA and non-NMDA receptors are differentially involved in the production of antinociception by morphine and beta-endorphin administered intracerebroventricularly in the formalin pain model.
    Chung KM; Song DK; Huh SO; Kim YH; Choi MR; Suh HW
    Neuropeptides; 2000; 34(3-4):158-66. PubMed ID: 11021975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antinociceptive effects of methysergide in various pain models.
    Chung KM; Choi SS; Han KJ; Han EJ; Lee HK; Suh HW
    Pharmacology; 2003 Oct; 69(2):93-101. PubMed ID: 12928583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Possible involvement of supraspinal opioid and GABA receptors in CDP-choline-induced antinociception in acute pain models in rats.
    Hamurtekin E; Bagdas D; Gurun MS
    Neurosci Lett; 2007 Jun; 420(2):116-21. PubMed ID: 17531379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intrathecal RGS4 inhibitor, CCG50014, reduces nociceptive responses and enhances opioid-mediated analgesic effects in the mouse formalin test.
    Yoon SY; Woo J; Park JO; Choi EJ; Shin HS; Roh DH; Kim KS
    Anesth Analg; 2015 Mar; 120(3):671-677. PubMed ID: 25695583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The synthetic TRH analogue taltirelin exerts modality-specific antinociceptive effects via distinct descending monoaminergic systems.
    Tanabe M; Tokuda Y; Takasu K; Ono K; Honda M; Ono H
    Br J Pharmacol; 2007 Feb; 150(4):403-14. PubMed ID: 17220907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antinociception effect and mechanisms of campanula punctata extract in the mouse.
    Park SH; Sim YB; Lim SS; Kim JK; Lee JK; Suh HW
    Korean J Physiol Pharmacol; 2010 Oct; 14(5):285-9. PubMed ID: 21165326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antinociceptive effect of smilaxin B administered intracerebroventricularly in the mouse.
    Suh HW; Song DK; Son KH; Woo MH; Do JC; Choi YS; Lee KH; Kim YH
    Planta Med; 1996 Apr; 62(2):141-5. PubMed ID: 8657747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Central antinociceptive effects of non-steroidal anti-inflammatory drugs and paracetamol. Experimental studies in the rat.
    Björkman R
    Acta Anaesthesiol Scand Suppl; 1995; 103():1-44. PubMed ID: 7725891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hop extract produces antinociception by acting on opioid system in mice.
    Park SH; Sim YB; Kang YJ; Kim SS; Kim CH; Kim SJ; Seo JY; Lim SM; Suh HW
    Korean J Physiol Pharmacol; 2012 Jun; 16(3):187-92. PubMed ID: 22802700
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.