BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

349 related articles for article (PubMed ID: 29366515)

  • 21. Antinociceptive profiles of aspirin and acetaminophen in formalin, substance P and glutamate pain models.
    Choi SS; Lee JK; Suh HW
    Brain Res; 2001 Dec; 921(1-2):233-9. PubMed ID: 11720731
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of Agrimonia pilosa Ledeb Extract on the Antinociception and Mechanisms in Mouse.
    Park SH; Sim YB; Kang YJ; Lee JK; Lim SS; Suh HW
    Korean J Physiol Pharmacol; 2012 Apr; 16(2):119-23. PubMed ID: 22563257
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Possible antinociceptive mechanisms of opioid receptor antagonists in the mouse formalin test.
    Choi SS; Han KJ; Lee HK; Han EJ; Suh HW
    Pharmacol Biochem Behav; 2003 May; 75(2):447-57. PubMed ID: 12873637
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Antinociceptive mechanisms of dipsacus saponin C administered intracerebroventricularly in the mouse.
    Suh HW; Song DK; Son KH; Wie MB; Lee KH; Jung KY; Do JC; Kim YH
    Gen Pharmacol; 1996 Oct; 27(7):1167-72. PubMed ID: 8981063
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of histamine receptor antagonists injected intrathecally on antinociception induced by opioids administered intracerebroventricularly in the mouse.
    Suh HW; Chung KM; Kim YH; Huh SO; Song DK
    Neuropeptides; 1999 Apr; 33(2):121-9. PubMed ID: 10657481
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of spinally administered simvastatin on the formalin-induced nociceptive response in mice.
    Ohsawa M; Mutoh J; Yamamoto S; Ono H; Hisa H
    J Pharmacol Sci; 2012; 119(1):102-6. PubMed ID: 22510521
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Antinociceptive properties of the hydroalcoholic extract and the flavonoid rutin obtained from Polygala paniculata L. in mice.
    Lapa Fda R; Gadotti VM; Missau FC; Pizzolatti MG; Marques MC; Dafré AL; Farina M; Rodrigues AL; Santos AR
    Basic Clin Pharmacol Toxicol; 2009 Apr; 104(4):306-15. PubMed ID: 19281602
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effect of formalin pretreatment on nicotine-induced antinociceptive effect: the role of mu-opioid receptor in the hippocampus.
    Kwon MS; Seo YJ; Choi SM; Lee JK; Jung JS; Park SH; Suh HW
    Neuroscience; 2008 Jun; 154(2):415-23. PubMed ID: 18456411
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of ginsenosides injected intrathecally or intracerebroventricularly on antinociception induced by beta -endorphin administered intracerebroventricularly in the mouse.
    Suh HW; Song DK; Huh SO; Kim YH
    Neuropeptides; 1999 Apr; 33(2):101-6. PubMed ID: 10657478
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Differential effects of adenosine receptor antagonists injected intrathecally on antinociception induced by morphine and beta-endorphin administered intracerebroventricularly in the mouse.
    Suh HW; Song DK; Kim YH
    Neuropeptides; 1997 Aug; 31(4):339-44. PubMed ID: 9308021
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The antinociceptive effect of SNAP5114, a gamma-aminobutyric acid transporter-3 inhibitor, in rat experimental pain models.
    Kataoka K; Hara K; Haranishi Y; Terada T; Sata T
    Anesth Analg; 2013 May; 116(5):1162-1169. PubMed ID: 23456665
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Antinociceptive properties of mixture of alpha-amyrin and beta-amyrin triterpenes: evidence for participation of protein kinase C and protein kinase A pathways.
    Otuki MF; Ferreira J; Lima FV; Meyre-Silva C; Malheiros A; Muller LA; Cani GS; Santos AR; Yunes RA; Calixto JB
    J Pharmacol Exp Ther; 2005 Apr; 313(1):310-8. PubMed ID: 15626726
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Involvement of opioid receptors in the systemic and peripheral antinociceptive actions of montelukast in the animal models of pain.
    Ghorbanzadeh B; Mansouri MT; Sahraei H; Alboghobeish S
    Eur J Pharmacol; 2016 May; 779():38-45. PubMed ID: 26948314
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Involvement of supraspinal and spinal CCK receptors in the modulation of antinociception induced by cold water swimming stress in the mouse.
    Suh HW; Song DK; Kwon SH; Kim KW; Min BH; Kim YH
    Neuropeptides; 1996 Aug; 30(4):379-84. PubMed ID: 8914865
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pretreatment with pertussis toxin differentially modulates morphine- and beta-endorphin-induced antinociception in the mouse.
    Tseng LF; Collins KA
    J Pharmacol Exp Ther; 1996 Oct; 279(1):39-46. PubMed ID: 8858973
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The modulatory role of β‑amyloid in the regulation of nociception in mice.
    Feng JH; Lee HJ; Sim SM; Shende M; Suh HW
    Acta Neurobiol Exp (Wars); 2020; 80(4):358-363. PubMed ID: 33350988
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analgesic effect of the flavonoid herbacetin in nociception animal models.
    Oqal M; Qnais E; Alqudah A; Gammoh O
    Eur Rev Med Pharmacol Sci; 2023 Dec; 27(23):11236-11248. PubMed ID: 38095373
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Supraspinal antinociceptive effect of apelin-13 in a mouse visceral pain model.
    Lv SY; Qin YJ; Wang NB; Yang YJ; Chen Q
    Peptides; 2012 Sep; 37(1):165-70. PubMed ID: 22732665
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Antinociceptive mechanisms of dipsacus saponin C administered intrathecally in mice.
    Suh H; Song D; Huh S; Son K; Kim Y
    J Ethnopharmacol; 2000 Jul; 71(1-2):211-8. PubMed ID: 10904165
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evidence for the involvement of glutamatergic and GABAergic systems and protein kinase A pathway in the antinociceptive effect caused by p-methoxy-diphenyl diselenide in mice.
    Pinto LG; Jesse CR; Nogueira CW; Savegnago L
    Pharmacol Biochem Behav; 2008 Feb; 88(4):487-96. PubMed ID: 18023853
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.