These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 29366945)

  • 1. The relevance of shear, sedimentation and diffusion during spin freezing, as potential first step of a continuous freeze-drying process for unit doses.
    Lammens J; Mortier STFC; De Meyer L; Vanbillemont B; Van Bockstal PJ; Van Herck S; Corver J; Nopens I; Vanhoorne V; De Geest BG; De Beer T; Vervaet C
    Int J Pharm; 2018 Mar; 539(1-2):1-10. PubMed ID: 29366945
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of spin freezing versus conventional freezing as part of a continuous pharmaceutical freeze-drying concept for unit doses.
    De Meyer L; Van Bockstal PJ; Corver J; Vervaet C; Remon JP; De Beer T
    Int J Pharm; 2015 Dec; 496(1):75-85. PubMed ID: 25981618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling the primary drying step for the determination of the optimal dynamic heating pad temperature in a continuous pharmaceutical freeze-drying process for unit doses.
    De Meyer L; Lammens J; Mortier STFC; Vanbillemont B; Van Bockstal PJ; Corver J; Nopens I; Vervaet C; De Beer T
    Int J Pharm; 2017 Oct; 532(1):185-193. PubMed ID: 28887221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noncontact Infrared-Mediated Heat Transfer During Continuous Freeze-Drying of Unit Doses.
    Van Bockstal PJ; De Meyer L; Corver J; Vervaet C; De Beer T
    J Pharm Sci; 2017 Jan; 106(1):71-82. PubMed ID: 27321237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A primary drying model-based comparison of conventional batch freeze-drying to continuous spin-freeze-drying for unit doses.
    Leys L; Vanbillemont B; Van Bockstal PJ; Lammens J; Nuytten G; Corver J; Vervaet C; De Beer T
    Eur J Pharm Biopharm; 2020 Dec; 157():97-107. PubMed ID: 33053425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and Application of a Mechanistic Cooling and Freezing Model of the Spin Freezing Step within the Framework of Continuous Freeze-Drying.
    Nuytten G; Revatta SR; Van Bockstal PJ; Kumar A; Lammens J; Leys L; Vanbillemont B; Corver J; Vervaet C; De Beer T
    Pharmaceutics; 2021 Dec; 13(12):. PubMed ID: 34959357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developing a framework to model the primary drying step of a continuous freeze-drying process based on infrared radiation.
    Van Bockstal PJ; Corver J; Mortier STFC; De Meyer L; Nopens I; Gernaey KV; De Beer T
    Eur J Pharm Biopharm; 2018 Jun; 127():159-170. PubMed ID: 29476909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fundamentals of freeze-drying.
    Nail SL; Jiang S; Chongprasert S; Knopp SA
    Pharm Biotechnol; 2002; 14():281-360. PubMed ID: 12189727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanistic modelling of infrared mediated energy transfer during the primary drying step of a continuous freeze-drying process.
    Van Bockstal PJ; Mortier ST; De Meyer L; Corver J; Vervaet C; Nopens I; De Beer T
    Eur J Pharm Biopharm; 2017 May; 114():11-21. PubMed ID: 28089785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal Imaging as a Noncontact Inline Process Analytical Tool for Product Temperature Monitoring during Continuous Freeze-Drying of Unit Doses.
    Van Bockstal PJ; Corver J; De Meyer L; Vervaet C; De Beer T
    Anal Chem; 2018 Nov; 90(22):13591-13599. PubMed ID: 30339362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual chamber cartridges in a continuous pharmaceutical freeze-drying concept: Determination of the optimal dynamic infrared heater temperature during primary drying.
    De Meyer L; Lammens J; Vanbillemont B; Van Bockstal PJ; Corver J; Vervaet C; Friess W; De Beer T
    Int J Pharm; 2019 Oct; 570():118631. PubMed ID: 31442499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel Mechanism of Glass Delamination in Type 1A Borosilicate Vials Containing Frozen Protein Formulations.
    Jiang G; Goss M; Li G; Jing W; Shen H; Fujimori K; Le L; Wong L; Wen ZQ; Nashed-Samuel Y; Riker K; Germansderfer A; Tsang P; Ricci M
    PDA J Pharm Sci Technol; 2013; 67(4):323-35. PubMed ID: 23872443
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of mass and heat transfer parameters during freeze-drying cycles of pharmaceutical products.
    Hottot A; Vessot S; Andrieu J
    PDA J Pharm Sci Technol; 2005; 59(2):138-53. PubMed ID: 15971546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quality by design: optimization of a freeze-drying cycle via design space in case of heterogeneous drying behavior and influence of the freezing protocol.
    Pisano R; Fissore D; Barresi AA; Brayard P; Chouvenc P; Woinet B
    Pharm Dev Technol; 2013 Feb; 18(1):280-95. PubMed ID: 23078169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Applications of Freezing and Freeze-Drying in Pharmaceutical Formulations.
    Izutsu KI
    Adv Exp Med Biol; 2018; 1081():371-383. PubMed ID: 30288720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlation of laboratory and production freeze drying cycles.
    Kuu WY; Hardwick LM; Akers MJ
    Int J Pharm; 2005 Sep; 302(1-2):56-67. PubMed ID: 16099610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of the dried product resistance variability and its influence on the product temperature in pharmaceutical freeze-drying.
    Scutellà B; Trelea IC; Bourlès E; Fonseca F; Passot S
    Eur J Pharm Biopharm; 2018 Jul; 128():379-388. PubMed ID: 29746910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein purification process engineering. Freeze drying: A practical overview.
    Gatlin LA; Nail SL
    Bioprocess Technol; 1994; 18():317-67. PubMed ID: 7764173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of a PAT-based in-line control system for a continuous spin freeze-drying process.
    Leys L; Nuytten G; Van Bockstal PJ; De Beer T
    Int J Pharm; 2023 Jun; 641():123062. PubMed ID: 37209792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of Natural Variations in Freeze-Drying Parameters on Product Temperature History: Application of Quasi Steady-State Heat and Mass Transfer and Simple Statistics.
    Pikal MJ; Pande P; Bogner R; Sane P; Mudhivarthi V; Sharma P
    AAPS PharmSciTech; 2018 Oct; 19(7):2828-2842. PubMed ID: 30259404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.