BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 29367047)

  • 1. Iron-based subsurface arsenic removal technologies by aeration: A review of the current state and future prospects.
    Luong VT; Cañas Kurz EE; Hellriegel U; Luu TL; Hoinkis J; Bundschuh J
    Water Res; 2018 Apr; 133():110-122. PubMed ID: 29367047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iron-based subsurface arsenic removal (SAR): Results of a long-term pilot-scale test in Vietnam.
    Cañas Kurz EE; Luong VT; Hellriegel U; Leidinger F; Luu TL; Bundschuh J; Hoinkis J
    Water Res; 2020 Aug; 181():115929. PubMed ID: 32505884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of groundwater composition on subsurface iron and arsenic removal.
    Moed DH; van Halem D; Verberk JQ; Amy GL; van Dijk JC
    Water Sci Technol; 2012; 66(1):173-8. PubMed ID: 22678215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ treatment of arsenic contaminated groundwater by aquifer iron coating: Experimental study.
    Xie X; Wang Y; Pi K; Liu C; Li J; Liu Y; Wang Z; Duan M
    Sci Total Environ; 2015 Sep; 527-528():38-46. PubMed ID: 25956146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arsenic Removal from Groundwater by Solar Driven Inline-Electrolytic Induced Co-Precipitation and Filtration-A Long Term Field Test Conducted in West Bengal.
    Otter P; Malakar P; Jana BB; Grischek T; Benz F; Goldmaier A; Feistel U; Jana J; Lahiri S; Alvarez JA
    Int J Environ Res Public Health; 2017 Oct; 14(10):. PubMed ID: 28974053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subsurface iron and arsenic removal for shallow tube well drinking water supply in rural Bangladesh.
    van Halem D; Olivero S; de Vet WW; Verberk JQ; Amy GL; van Dijk JC
    Water Res; 2010 Nov; 44(19):5761-9. PubMed ID: 20573366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Technology for remediation and disposal of arsenic.
    Visoottiviseth P; Ahmed F
    Rev Environ Contam Toxicol; 2008; 197():77-128. PubMed ID: 18982998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Implementation of zero-valent iron (ZVI) into drinking water supply - role of the ZVI and biological processes.
    Kowalski KP; Søgaard EG
    Chemosphere; 2014 Dec; 117():108-14. PubMed ID: 24996201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reactive transport modeling of subsurface arsenic removal systems in rural Bangladesh.
    Rahman MM; Bakker M; Patty CH; Hassan Z; Röling WF; Ahmed KM; van Breukelen BM
    Sci Total Environ; 2015 Dec; 537():277-93. PubMed ID: 26282762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iron and arsenic cycling in intertidal surface sediments during wetland remediation.
    Johnston SG; Keene AF; Burton ED; Bush RT; Sullivan LA
    Environ Sci Technol; 2011 Mar; 45(6):2179-85. PubMed ID: 21322553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arsenic remediation of drinking water using iron-oxide coated coal bottom ash.
    Mathieu JL; Gadgil AJ; Addy SE; Kowolik K
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010 Sep; 45(11):1446-60. PubMed ID: 20694883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A cost-effective system for in-situ geological arsenic adsorption from groundwater.
    Shan H; Ma T; Wang Y; Zhao J; Han H; Deng Y; He X; Dong Y
    J Contam Hydrol; 2013 Nov; 154():1-9. PubMed ID: 24035830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subsurface iron and arsenic removal: low-cost technology for community-based water supply in Bangladesh.
    van Halem D; Heijman SG; Johnston R; Huq IM; Ghosh SK; Verberk JQ; Amy GL; van Dijk JC
    Water Sci Technol; 2010; 62(11):2702-9. PubMed ID: 21099059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ treatment of arsenic-contaminated groundwater by air sparging.
    Brunsting JH; McBean EA
    J Contam Hydrol; 2014 Apr; 159():20-35. PubMed ID: 24561624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance of a zerovalent iron reactive barrier for the treatment of arsenic in groundwater: Part 2. Geochemical modeling and solid phase studies.
    Beak DG; Wilkin RT
    J Contam Hydrol; 2009 Apr; 106(1-2):15-28. PubMed ID: 19167132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immobilization of As(III) in soil and groundwater using a new class of polysaccharide stabilized Fe-Mn oxide nanoparticles.
    An B; Zhao D
    J Hazard Mater; 2012 Apr; 211-212():332-41. PubMed ID: 22119304
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arsenic mobilization from sediments in microcosms under sulfate reduction.
    Sun J; Quicksall AN; Chillrud SN; Mailloux BJ; Bostick BC
    Chemosphere; 2016 Jun; 153():254-61. PubMed ID: 27037658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Remediation of inorganic arsenic in groundwater for safe water supply: a critical assessment of technological solutions.
    Mondal P; Bhowmick S; Chatterjee D; Figoli A; Van der Bruggen B
    Chemosphere; 2013 Jun; 92(2):157-70. PubMed ID: 23466274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of iron-based technologies in contaminated land and groundwater remediation: a review.
    Cundy AB; Hopkinson L; Whitby RL
    Sci Total Environ; 2008 Aug; 400(1-3):42-51. PubMed ID: 18692221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arsenic and fluoride contaminated groundwaters: A review of current technologies for contaminants removal.
    Jadhav SV; Bringas E; Yadav GD; Rathod VK; Ortiz I; Marathe KV
    J Environ Manage; 2015 Oct; 162():306-25. PubMed ID: 26265600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.