BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

340 related articles for article (PubMed ID: 29367109)

  • 41. A novel mathematical model of ATM/p53/NF- κB pathways points to the importance of the DDR switch-off mechanisms.
    Jonak K; Kurpas M; Szoltysek K; Janus P; Abramowicz A; Puszynski K
    BMC Syst Biol; 2016 Aug; 10(1):75. PubMed ID: 27526774
    [TBL] [Abstract][Full Text] [Related]  

  • 42. RNF183 promotes proliferation and metastasis of colorectal cancer cells via activation of NF-κB-IL-8 axis.
    Geng R; Tan X; Wu J; Pan Z; Yi M; Shi W; Liu R; Yao C; Wang G; Lin J; Qiu L; Huang W; Chen S
    Cell Death Dis; 2017 Aug; 8(8):e2994. PubMed ID: 28796265
    [TBL] [Abstract][Full Text] [Related]  

  • 43. WIP1 phosphatase is a negative regulator of NF-kappaB signalling.
    Chew J; Biswas S; Shreeram S; Humaidi M; Wong ET; Dhillion MK; Teo H; Hazra A; Fang CC; López-Collazo E; Bulavin DV; Tergaonkar V
    Nat Cell Biol; 2009 May; 11(5):659-66. PubMed ID: 19377466
    [TBL] [Abstract][Full Text] [Related]  

  • 44. LncRNA AB073614 regulates proliferation and metastasis of colorectal cancer cells via the PI3K/AKT signaling pathway.
    Wang Y; Kuang H; Xue J; Liao L; Yin F; Zhou X
    Biomed Pharmacother; 2017 Sep; 93():1230-1237. PubMed ID: 28738539
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Wip1 regulates wound healing by affecting activities of keratinocytes and endothelial cells through ATM-p53 and mTOR signaling.
    Yu N; Li T; Qiu Z; Xu J; Li Y; Huang J; Yang Y; Li Z; Long X; Zhang H
    Burns; 2023 Dec; 49(8):1969-1982. PubMed ID: 37357059
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The tumor-suppressor gene LZTS1 suppresses colorectal cancer proliferation through inhibition of the AKT-mTOR signaling pathway.
    Zhou W; He MR; Jiao HL; He LQ; Deng DL; Cai JJ; Xiao ZY; Ye YP; Ding YQ; Liao WT; Liu SD
    Cancer Lett; 2015 Apr; 360(1):68-75. PubMed ID: 25667121
    [TBL] [Abstract][Full Text] [Related]  

  • 47. TRIM29 Overexpression Promotes Proliferation and Survival of Bladder Cancer Cells through NF-κB Signaling.
    Tan ST; Liu SY; Wu B
    Cancer Res Treat; 2016 Oct; 48(4):1302-1312. PubMed ID: 26987391
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nemo-like kinase as a negative regulator of nuclear receptor Nurr1 gene transcription in prostate cancer.
    Wang J; Yang ZH; Chen H; Li HH; Chen LY; Zhu Z; Zou Y; Ding CC; Yang J; He ZW
    BMC Cancer; 2016 Mar; 16():257. PubMed ID: 27036119
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [CaMKIIγ promotes in vitro and in vivo growth of colorectal cancer cells by upregulating nuclear factor-κB signaling pathway].
    Xu F; Qi H; Yu X; Xu R
    Nan Fang Yi Ke Da Xue Xue Bao; 2013 May; 33(5):649-53. PubMed ID: 23688981
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Upregulation of Rab31 is associated with poor prognosis and promotes colorectal carcinoma proliferation via the mTOR/p70S6K/Cyclin D1 signalling pathway.
    Yang L; Tian X; Chen X; Lin X; Tang C; Gao Y; Chen S; Ge Z
    Life Sci; 2020 Sep; 257():118126. PubMed ID: 32707053
    [TBL] [Abstract][Full Text] [Related]  

  • 51. MicroRNA-451 regulates AMPK/mTORC1 signaling and fascin1 expression in HT-29 colorectal cancer.
    Chen MB; Wei MX; Han JY; Wu XY; Li C; Wang J; Shen W; Lu PH
    Cell Signal; 2014 Jan; 26(1):102-9. PubMed ID: 23899558
    [TBL] [Abstract][Full Text] [Related]  

  • 52. PDCD6 additively cooperates with anti-cancer drugs through activation of NF-κB pathways.
    Park SH; Lee JH; Lee GB; Byun HJ; Kim BR; Park CY; Kim HB; Rho SB
    Cell Signal; 2012 Mar; 24(3):726-33. PubMed ID: 22142513
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Toll-like receptor 2 stimulation promotes colorectal cancer cell growth via PI3K/Akt and NF-κB signaling pathways.
    Liu YD; Ji CB; Li SB; Yan F; Gu QS; Balic JJ; Yu L; Li JK
    Int Immunopharmacol; 2018 Jun; 59():375-383. PubMed ID: 29689497
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Clinical significance of Wip1 overexpression and its association with the p38MAPK/p53/p16 pathway in NSCLC.
    Yang S; Dong S; Qu X; Zhong X; Zhang Q
    Mol Med Rep; 2017 Feb; 15(2):719-723. PubMed ID: 27959454
    [TBL] [Abstract][Full Text] [Related]  

  • 55. STK25-induced inhibition of aerobic glycolysis via GOLPH3-mTOR pathway suppresses cell proliferation in colorectal cancer.
    Wu F; Gao P; Wu W; Wang Z; Yang J; Di J; Jiang B; Su X
    J Exp Clin Cancer Res; 2018 Jul; 37(1):144. PubMed ID: 29996891
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Atypical role of sprouty in p21 dependent inhibition of cell proliferation in colorectal cancer.
    Zhang Q; Shim K; Wright K; Jurkevich A; Khare S
    Mol Carcinog; 2016 Sep; 55(9):1355-68. PubMed ID: 26293890
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Bidirectional regulation of nuclear factor-κB and mammalian target of rapamycin signaling functionally links Bnip3 gene repression and cell survival of ventricular myocytes.
    Dhingra R; Gang H; Wang Y; Biala AK; Aviv Y; Margulets V; Tee A; Kirshenbaum LA
    Circ Heart Fail; 2013 Mar; 6(2):335-43. PubMed ID: 23395931
    [TBL] [Abstract][Full Text] [Related]  

  • 58. 14-3-3γ Regulates Lipopolysaccharide-Induced Inflammatory Responses and Lactation in Dairy Cow Mammary Epithelial Cells by Inhibiting NF-κB and MAPKs and Up-Regulating mTOR Signaling.
    Liu L; Lin Y; Liu L; Bian Y; Zhang L; Gao X; Li Q
    Int J Mol Sci; 2015 Jul; 16(7):16622-41. PubMed ID: 26204835
    [TBL] [Abstract][Full Text] [Related]  

  • 59. GNA13 promotes tumor growth and angiogenesis by upregulating CXC chemokines via the NF-κB signaling pathway in colorectal cancer cells.
    Zhang Z; Tan X; Luo J; Cui B; Lei S; Si Z; Shen L; Yao H
    Cancer Med; 2018 Nov; 7(11):5611-5620. PubMed ID: 30267476
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Sex determining region Y-box 2 inhibits the proliferation of colorectal adenocarcinoma cells through the mTOR signaling pathway.
    Liu H; Du L; Wen Z; Yang Y; Li J; Dong Z; Zheng G; Wang L; Zhang X; Wang C
    Int J Mol Med; 2013 Jul; 32(1):59-66. PubMed ID: 23599173
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.