These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

424 related articles for article (PubMed ID: 29367339)

  • 1. Systems analysis of the glycoside hydrolase family 18 enzymes from
    Monge EC; Tuveng TR; Vaaje-Kolstad G; Eijsink VGH; Gardner JG
    J Biol Chem; 2018 Mar; 293(10):3849-3859. PubMed ID: 29367339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient chito-oligosaccharide utilization requires two TonB-dependent transporters and one hexosaminidase in Cellvibrio japonicus.
    Monge EC; Gardner JG
    Mol Microbiol; 2021 Aug; 116(2):366-380. PubMed ID: 33735458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteomic investigation of the secretome of Cellvibrio japonicus during growth on chitin.
    Tuveng TR; Arntzen MØ; Bengtsson O; Gardner JG; Vaaje-Kolstad G; Eijsink VG
    Proteomics; 2016 Jul; 16(13):1904-14. PubMed ID: 27169553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional and structural characterization of a potent GH74 endo-xyloglucanase from the soil saprophyte Cellvibrio japonicus unravels the first step of xyloglucan degradation.
    Attia M; Stepper J; Davies GJ; Brumer H
    FEBS J; 2016 May; 283(9):1701-19. PubMed ID: 26929175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trehalose Degradation by Cellvibrio japonicus Exhibits No Functional Redundancy and Is Solely Dependent on the Tre37A Enzyme.
    Garcia CA; Narrett JA; Gardner JG
    Appl Environ Microbiol; 2020 Oct; 86(22):. PubMed ID: 32917758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comprehensive functional characterization of the glycoside hydrolase family 3 enzymes from Cellvibrio japonicus reveals unique metabolic roles in biomass saccharification.
    Nelson CE; Attia MA; Rogowski A; Morland C; Brumer H; Gardner JG
    Environ Microbiol; 2017 Dec; 19(12):5025-5039. PubMed ID: 29052930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The chitinolytic machinery of Serratia marcescens--a model system for enzymatic degradation of recalcitrant polysaccharides.
    Vaaje-Kolstad G; Horn SJ; Sørlie M; Eijsink VG
    FEBS J; 2013 Jul; 280(13):3028-49. PubMed ID: 23398882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural analysis of group II chitinase (ChtII) catalysis completes the puzzle of chitin hydrolysis in insects.
    Chen W; Qu M; Zhou Y; Yang Q
    J Biol Chem; 2018 Feb; 293(8):2652-2660. PubMed ID: 29317504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polysaccharide degradation systems of the saprophytic bacterium Cellvibrio japonicus.
    Gardner JG
    World J Microbiol Biotechnol; 2016 Jul; 32(7):121. PubMed ID: 27263016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New Family of Carbohydrate-Binding Modules Defined by a Galactosyl-Binding Protein Module from a Cellvibrio japonicus Endo-Xyloglucanase.
    Attia MA; Brumer H
    Appl Environ Microbiol; 2021 Feb; 87(5):e0263420. PubMed ID: 33355108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activity-Based Protein Profiling of Chitin Catabolism.
    Zegeye EK; Sadler NC; Lomas GX; Attah IK; Jansson JK; Hofmockel KS; Anderton CR; Wright AT
    Chembiochem; 2021 Feb; 22(4):717-723. PubMed ID: 33049124
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A reducing-end-acting chitinase from Vibrio proteolyticus belonging to glycoside hydrolase family 19.
    Honda Y; Taniguchi H; Kitaoka M
    Appl Microbiol Biotechnol; 2008 Mar; 78(4):627-34. PubMed ID: 18214468
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural and Functional Analysis of a Lytic Polysaccharide Monooxygenase Important for Efficient Utilization of Chitin in Cellvibrio japonicus.
    Forsberg Z; Nelson CE; Dalhus B; Mekasha S; Loose JS; Crouch LI; Røhr ÅK; Gardner JG; Eijsink VG; Vaaje-Kolstad G
    J Biol Chem; 2016 Apr; 291(14):7300-12. PubMed ID: 26858252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biochemical characterization of Aspergillus niger CfcI, a glycoside hydrolase family 18 chitinase that releases monomers during substrate hydrolysis.
    van Munster JM; van der Kaaij RM; Dijkhuizen L; van der Maarel MJEC
    Microbiology (Reading); 2012 Aug; 158(Pt 8):2168-2179. PubMed ID: 22575895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The third chitinase gene (chiC) of Serratia marcescens 2170 and the relationship of its product to other bacterial chitinases.
    Suzuki K; Taiyoji M; Sugawara N; Nikaidou N; Henrissat B; Watanabe T
    Biochem J; 1999 Nov; 343 Pt 3(Pt 3):587-96. PubMed ID: 10527937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural enzymology of Cellvibrio japonicus Agd31B protein reveals α-transglucosylase activity in glycoside hydrolase family 31.
    Larsbrink J; Izumi A; Hemsworth GR; Davies GJ; Brumer H
    J Biol Chem; 2012 Dec; 287(52):43288-99. PubMed ID: 23132856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A trimodular bacterial enzyme combining hydrolytic activity with oxidative glycosidic bond cleavage efficiently degrades chitin.
    Mekasha S; Tuveng TR; Askarian F; Choudhary S; Schmidt-Dannert C; Niebisch A; Modregger J; Vaaje-Kolstad G; Eijsink VGH
    J Biol Chem; 2020 Jul; 295(27):9134-9146. PubMed ID: 32398257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chitinolytic functions in actinobacteria: ecology, enzymes, and evolution.
    Lacombe-Harvey MÈ; Brzezinski R; Beaulieu C
    Appl Microbiol Biotechnol; 2018 Sep; 102(17):7219-7230. PubMed ID: 29931600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of a chitinase from the cellulolytic actinomycete Thermobifida fusca.
    Gaber Y; Mekasha S; Vaaje-Kolstad G; Eijsink VGH; Fraaije MW
    Biochim Biophys Acta; 2016 Sep; 1864(9):1253-1259. PubMed ID: 27108953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Fish Pathogen Aliivibrio salmonicida LFI1238 Can Degrade and Metabolize Chitin despite Gene Disruption in the Chitinolytic Pathway.
    Skåne A; Minniti G; Loose JSM; Mekasha S; Bissaro B; Mathiesen G; Arntzen MØ; Vaaje-Kolstad G
    Appl Environ Microbiol; 2021 Sep; 87(19):e0052921. PubMed ID: 34319813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.