These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. The effects of wall thickness, axial strain and end proximity on the pressure-area relation of collapsible tubes. Bertram CD J Biomech; 1987; 20(9):863-76. PubMed ID: 3680312 [TBL] [Abstract][Full Text] [Related]
9. Measurements of wave speed and compliance in a collapsible tube during self-excited oscillations: a test of the choking hypothesis. Bertram CD; Raymond CJ Med Biol Eng Comput; 1991 Sep; 29(5):493-500. PubMed ID: 1817211 [TBL] [Abstract][Full Text] [Related]
10. The flow field downstream of an oscillating collapsed tube. Bertram CD; Nugent AH J Biomech Eng; 2005 Feb; 127(1):39-45. PubMed ID: 15868787 [TBL] [Abstract][Full Text] [Related]
11. Numerical analysis for stability and self-excited oscillation in collapsible tube flow. Hayashi S; Hayase T; Kawamura H J Biomech Eng; 1998 Aug; 120(4):468-75. PubMed ID: 10412417 [TBL] [Abstract][Full Text] [Related]
12. PIV measurements of the flow field just downstream of an oscillating collapsible tube. Bertram CD; Truong NK; Hall SD J Biomech Eng; 2008 Dec; 130(6):061011. PubMed ID: 19045540 [TBL] [Abstract][Full Text] [Related]
13. A mathematical model of flow through a collapsible tube--I. Model and steady flow results. Morgan P; Parker KH J Biomech; 1989; 22(11-12):1263-70. PubMed ID: 2625427 [TBL] [Abstract][Full Text] [Related]
14. Oscillatory fluid flow in deformable tubes: Implications for pore-scale hydromechanics from comparing experimental observations with theoretical predictions. Kurzeja P; Steeb H; Strutz MA; Renner J J Acoust Soc Am; 2016 Dec; 140(6):4378. PubMed ID: 28040004 [TBL] [Abstract][Full Text] [Related]
15. Steady flow through collapsible tubes: measurements of flow and geometry. Elad D; Sahar M; Avidor JM; Einav S J Biomech Eng; 1992 Feb; 114(1):84-91. PubMed ID: 1491591 [TBL] [Abstract][Full Text] [Related]
16. Three-dimensional flows in a hyperelastic vessel under external pressure. Zhang S; Luo X; Cai Z Biomech Model Mechanobiol; 2018 Aug; 17(4):1187-1207. PubMed ID: 29744606 [TBL] [Abstract][Full Text] [Related]
17. A study of the bifurcation behaviour of a model of flow through a collapsible tube. Armitstead JP; Bertram CD; Jensen OE Bull Math Biol; 1996 Jul; 58(4):611-41. PubMed ID: 8756267 [TBL] [Abstract][Full Text] [Related]
18. Physical principles governing the interrelationships of pressure, flow and volume in collapsible tubes. Chiles C; Ravin CE Invest Radiol; 1981; 16(6):525-7. PubMed ID: 7319761 [TBL] [Abstract][Full Text] [Related]
19. The energetics of flow through a rapidly oscillating tube with slowly varying amplitude. Whittaker RJ; Heil M; Waters SL Philos Trans A Math Phys Eng Sci; 2011 Jul; 369(1947):2989-3006. PubMed ID: 21690145 [TBL] [Abstract][Full Text] [Related]
20. Self-excited oscillations in thin-walled collapsible tubes. Barclay WH; Thalayasingam S Med Biol Eng Comput; 1986 Sep; 24(5):482-7. PubMed ID: 3821205 [No Abstract] [Full Text] [Related] [Next] [New Search]