BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 29367487)

  • 1. Optimization of Enzymatic Cell Disruption for Improving Lipid Extraction from Schizochytrium sp. through Response Surface Methodology.
    Lin Y; Xie X; Yuan B; Fu J; Liu L; Tian H; Chen T; He D
    J Oleo Sci; 2018 Feb; 67(2):215-224. PubMed ID: 29367487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrated Process for
    Berzal G; García-García P; Señoráns FJ
    Mar Drugs; 2024 Mar; 22(4):. PubMed ID: 38667763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bead milling for lipid recovery from thraustochytrid cells and selective hydrolysis of Schizochytrium DT3 oil using lipase.
    Byreddy AR; Barrow CJ; Puri M
    Bioresour Technol; 2016 Jan; 200():464-9. PubMed ID: 26519698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comprehensive analysis of metabolic alterations in Schizochytrium sp. strains with different DHA content.
    Yang J; Song X; Wang L; Cui Q
    J Chromatogr B Analyt Technol Biomed Life Sci; 2020 Dec; 1160():122193. PubMed ID: 32949924
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing docosahexaenoic acid production of Schizochytrium sp. by optimizing fermentation using central composite design.
    Ding J; Fu Z; Zhu Y; He J; Ma L; Bu D
    BMC Biotechnol; 2022 Dec; 22(1):39. PubMed ID: 36494804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of Cell Disruption Methods for Improving Lipid Extraction from Thraustochytrid Strains.
    Byreddy AR; Gupta A; Barrow CJ; Puri M
    Mar Drugs; 2015 Aug; 13(8):5111-27. PubMed ID: 26270668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced fatty acid storage combined with the multi-factor optimization of fermentation for high-level production of docosahexaenoic acid in Schizochytrium sp.
    Jia YL; Zhang Y; Xu LW; Zhang ZX; Xu YS; Ma W; Gu Y; Sun XM
    Bioresour Technol; 2024 Apr; 398():130532. PubMed ID: 38447618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lipid Extraction from
    Liu S; Abu Hajar HA; Riefler G; Stuart BJ
    Biomed Res Int; 2018; 2018():2720763. PubMed ID: 30627545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of carbon and nitrogen feeding strategy on high production of biomass and docosahexaenoic acid (DHA) by Schizochytrium sp. LU310.
    Ling X; Guo J; Liu X; Zhang X; Wang N; Lu Y; Ng IS
    Bioresour Technol; 2015 May; 184():139-147. PubMed ID: 25451778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of low-intensity pulsed ultrasound on the growth of Schizochytrium sp. for omega-3 production.
    Savchenko O; Xing J; Burrell M; Burrell R; Chen J
    Biotechnol Bioeng; 2021 Jan; 118(1):319-328. PubMed ID: 32949158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-cell-density cultivation of Schizochytrium sp. in an ammonium/pH-auxostat fed-batch system.
    Ganuza E; Anderson AJ; Ratledge C
    Biotechnol Lett; 2008 Sep; 30(9):1559-64. PubMed ID: 18414793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasonic-assisted Aqueous Extraction and Physicochemical Characterization of Oil from Clanis bilineata.
    Sun M; Xu X; Zhang Q; Rui X; Wu J; Dong M
    J Oleo Sci; 2018 Feb; 67(2):151-165. PubMed ID: 29367478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of docosahexaenoic acid (DHA) production from Schizochytrium sp. S31 using different growth medium conditions.
    Sahin D; Tas E; Altindag UH
    AMB Express; 2018 Jan; 8(1):7. PubMed ID: 29368055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Safety evaluation of DHA-rich Algal Oil from Schizochytrium sp.
    Fedorova-Dahms I; Marone PA; Bauter M; Ryan AS
    Food Chem Toxicol; 2011 Dec; 49(12):3310-8. PubMed ID: 21914458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing the various solvent extraction method via microwave irradiation for extraction of lipids from marine microalgae in biodiesel production.
    Teo CL; Idris A
    Bioresour Technol; 2014 Nov; 171():477-81. PubMed ID: 25201293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of supercritical carbon dioxide extraction of silkworm pupal oil applying the response surface methodology.
    Wei ZJ; Liao AM; Zhang HX; Liu J; Jiang ST
    Bioresour Technol; 2009 Sep; 100(18):4214-9. PubMed ID: 19414250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of fluconazole in the regulation of fatty acid and unsaponifiable matter biosynthesis in Schizochytrium sp. MYA 1381.
    Li J; Zhou H; Pan X; Li Z; Lu Y; He N; Meng T; Yao C; Chen C; Ling X
    BMC Microbiol; 2019 Nov; 19(1):256. PubMed ID: 31729956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a cooperative two-factor adaptive-evolution method to enhance lipid production and prevent lipid peroxidation in
    Sun XM; Ren LJ; Bi ZQ; Ji XJ; Zhao QY; Jiang L; Huang H
    Biotechnol Biofuels; 2018; 11():65. PubMed ID: 29563968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acid-catalyzed hot-water extraction of docosahexaenoic acid (DHA)-rich lipids from Aurantiochytrium sp. KRS101.
    Choi SA; Jung JY; Kim K; Lee JS; Kwon JH; Kim SW; Yang JW; Park JY
    Bioresour Technol; 2014 Jun; 161():469-72. PubMed ID: 24755396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-value utilization of the waste hydrolysate of Dioscorea zingiberensis for docosahexaenoic acid production in Schizochytrium sp.
    Bao Z; Zhu Y; Zhang K; Feng Y; Chen X; Lei M; Yu L
    Bioresour Technol; 2021 Sep; 336():125305. PubMed ID: 34044242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.