BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 29367548)

  • 1. Kinking and Torsion Can Significantly Improve the Efficiency of Valveless Pumping in Periodically Compressed Tubular Conduits. Implications for Understanding of the Form-Function Relationship of Embryonic Heart Tubes.
    Hiermeier F; Männer J
    J Cardiovasc Dev Dis; 2017 Nov; 4(4):. PubMed ID: 29367548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Output of a valveless Liebau pump with biologically relevant vessel properties and compression frequencies.
    Davtyan R; Sarvazyan NA
    Sci Rep; 2021 Jun; 11(1):11505. PubMed ID: 34075100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How does the tubular embryonic heart work? Looking for the physical mechanism generating unidirectional blood flow in the valveless embryonic heart tube.
    Männer J; Wessel A; Yelbuz TM
    Dev Dyn; 2010 Apr; 239(4):1035-46. PubMed ID: 20235196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Building Valveless Impedance Pumps From Biological Components: Progress and Challenges.
    Sarvazyan N
    Front Physiol; 2021; 12():770906. PubMed ID: 35173623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Liebau phenomenon: a translational approach to new paradigms of CSF circulation and related flow disturbances.
    Longatti P
    Childs Nerv Syst; 2018 Feb; 34(2):227-233. PubMed ID: 29124390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dimensionless analysis of valveless pumping in a thick-wall elastic tube: Application to the tubular embryonic heart.
    Kozlovsky P; Rosenfeld M; Jaffa AJ; Elad D
    J Biomech; 2015 Jun; 48(9):1652-61. PubMed ID: 25835790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A mathematical model of valveless pumping: a lumped model with time-dependent compliance, resistance, and inertia.
    Jung E
    Bull Math Biol; 2007 Oct; 69(7):2181-98. PubMed ID: 17457651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental study of an asymmetric valveless pump to elucidate insights into strategies for pediatric extravascular flow augmentation.
    Anatol J; García-Díaz M; Barrios-Collado C; Moneo-Fernández JA; Horvath M; Parra T; Castro-Ruiz F; Roche ET; Sierra-Pallares J
    Sci Rep; 2022 Dec; 12(1):22165. PubMed ID: 36550224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In-vitro investigation of a potential wave pumping effect in human aorta.
    Pahlevan NM; Gharib M
    J Biomech; 2013 Sep; 46(13):2122-9. PubMed ID: 23915578
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Live mechanistic assessment of localized cardiac pumping in mammalian tubular embryonic heart.
    Wang S; Larina I
    J Biomed Opt; 2020 Aug; 25(8):1-19. PubMed ID: 32762173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Following the Beat: Imaging the Valveless Pumping Function in the Early Embryonic Heart.
    Wang S; Larina IV
    J Cardiovasc Dev Dis; 2022 Aug; 9(8):. PubMed ID: 36005431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cardiac looping in the chick embryo: a morphological review with special reference to terminological and biomechanical aspects of the looping process.
    Männer J
    Anat Rec; 2000 Jul; 259(3):248-62. PubMed ID: 10861359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Valveless pumping behavior of the simulated embryonic heart tube as a function of contractile patterns and myocardial stiffness.
    Sharifi A; Gendernalik A; Garrity D; Bark D
    Biomech Model Mechanobiol; 2021 Oct; 20(5):2001-2012. PubMed ID: 34297252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Driving Mechanism for Unidirectional Blood Flow in the Tubular Embryonic Heart.
    Kozlovsky P; Bryson-Richardson RJ; Jaffa AJ; Rosenfeld M; Elad D
    Ann Biomed Eng; 2016 Oct; 44(10):3069-3083. PubMed ID: 27112782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On rotation, torsion, lateralization, and handedness of the embryonic heart loop: new insights from a simulation model for the heart loop of chick embryos.
    Männer J
    Anat Rec A Discov Mol Cell Evol Biol; 2004 May; 278(1):481-92. PubMed ID: 15103744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biohybrid valveless pump-bot powered by engineered skeletal muscle.
    Li Z; Seo Y; Aydin O; Elhebeary M; Kamm RD; Kong H; Saif MTA
    Proc Natl Acad Sci U S A; 2019 Jan; 116(5):1543-1548. PubMed ID: 30635415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bending and twisting the embryonic heart: a computational model for c-looping based on realistic geometry.
    Shi Y; Yao J; Young JM; Fee JA; Perucchio R; Taber LA
    Front Physiol; 2014; 5():297. PubMed ID: 25161623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large-amplitude, short-wave peristalsis and its implications for transport.
    Waldrop L; Miller L
    Biomech Model Mechanobiol; 2016 Jun; 15(3):629-42. PubMed ID: 26239381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Transitional Cardiac Pumping Mechanics in the Embryonic Heart.
    Johnson BM; Garrity DM; Dasi LP
    Cardiovasc Eng Technol; 2013 Sep; 4(3):246-255. PubMed ID: 29637499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dielectric Elastomer Actuator-Based Valveless Impedance-Driven Pumping for Meso- and Macroscale Applications.
    Benouhiba A; Walter A; Jahren SE; Martinez T; Clavica F; Obrist D; Civet Y; Perriard Y
    Soft Robot; 2024 Apr; 11(2):198-206. PubMed ID: 37729065
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.