These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 29367599)

  • 21. Ecological Review of the
    Wilson ER; Murphy KJ; Wyeth RC
    Biol Bull; 2022 Apr; 242(2):153-171. PubMed ID: 35580029
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Polymorphism and divergence within the ascidian genus Ciona.
    Nydam ML; Harrison RG
    Mol Phylogenet Evol; 2010 Aug; 56(2):718-26. PubMed ID: 20403444
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microinjection of Exogenous Nucleic Acids into Eggs: Ciona Species.
    Kobayashi K; Satou Y
    Adv Exp Med Biol; 2018; 1029():5-13. PubMed ID: 29542076
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Ciona intestinalis genome: when the constraints are off.
    Holland LZ; Gibson-Brown JJ
    Bioessays; 2003 Jun; 25(6):529-32. PubMed ID: 12766941
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A genome-wide survey of genes for enzymes involved in pigment synthesis in an ascidian, Ciona intestinalis.
    Takeuchi K; Satou Y; Yamamoto H; Satoh N
    Zoolog Sci; 2005 Jul; 22(7):723-34. PubMed ID: 16082161
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phylogenetic analysis of Ciona intestinalis gene superfamilies supports the hypothesis of successive gene expansions.
    Leveugle M; Prat K; Popovici C; Birnbaum D; Coulier F
    J Mol Evol; 2004 Feb; 58(2):168-81. PubMed ID: 15042337
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rapid microevolution during recent range expansion to harsh environments.
    Chen Y; Shenkar N; Ni P; Lin Y; Li S; Zhan A
    BMC Evol Biol; 2018 Dec; 18(1):187. PubMed ID: 30526493
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chromosomal Inversion Polymorphisms in Two Sympatric Ascidian Lineages.
    Satou Y; Sato A; Yasuo H; Mihirogi Y; Bishop J; Fujie M; Kawamitsu M; Hisata K; Satoh N
    Genome Biol Evol; 2021 Jun; 13(6):. PubMed ID: 33822040
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An organismal perspective on C. intestinalis development, origins and diversification.
    Kourakis MJ; Smith WC
    Elife; 2015 Mar; 4():. PubMed ID: 25807088
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Peptidomic analysis of the central nervous system of the protochordate, Ciona intestinalis: homologs and prototypes of vertebrate peptides and novel peptides.
    Kawada T; Ogasawara M; Sekiguchi T; Aoyama M; Hotta K; Oka K; Satake H
    Endocrinology; 2011 Jun; 152(6):2416-27. PubMed ID: 21467196
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A genomewide survey of developmentally relevant genes in Ciona intestinalis. III. Genes for Fox, ETS, nuclear receptors and NFkappaB.
    Yagi K; Satou Y; Mazet F; Shimeld SM; Degnan B; Rokhsar D; Levine M; Kohara Y; Satoh N
    Dev Genes Evol; 2003 Jun; 213(5-6):235-44. PubMed ID: 12743820
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phylogenetic conservation of cytostatic factor related genes in the ascidian Ciona intestinalis.
    Russo GL; Bilotto S; Ciarcia G; Tosti E
    Gene; 2009 Jan; 429(1-2):104-11. PubMed ID: 18977421
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Primary genetic linkage maps of the ascidian, Ciona intestinalis.
    Kano S; Satoh N; Sordino P
    Zoolog Sci; 2006 Jan; 23(1):31-9. PubMed ID: 16547403
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fgf genes in the basal chordate Ciona intestinalis.
    Satou Y; Imai KS; Satoh N
    Dev Genes Evol; 2002 Oct; 212(9):432-8. PubMed ID: 12373588
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A genomewide survey of developmentally relevant genes in Ciona intestinalis. VIII. Genes for PI3K signaling and cell cycle.
    Kawashima T; Tokuoka M; Awazu S; Satoh N; Satou Y
    Dev Genes Evol; 2003 Jun; 213(5-6):284-90. PubMed ID: 12743821
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A genomewide survey of developmentally relevant genes in Ciona intestinalis. VI. Genes for Wnt, TGFbeta, Hedgehog and JAK/STAT signaling pathways.
    Hino K; Satou Y; Yagi K; Satoh N
    Dev Genes Evol; 2003 Jun; 213(5-6):264-72. PubMed ID: 12739142
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Loss of ancestral genes in the genomic evolution of Ciona intestinalis.
    Hughes AL; Friedman R
    Evol Dev; 2005; 7(3):196-200. PubMed ID: 15876192
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A cDNA resource from the basal chordate Ciona intestinalis.
    Satou Y; Yamada L; Mochizuki Y; Takatori N; Kawashima T; Sasaki A; Hamaguchi M; Awazu S; Yagi K; Sasakura Y; Nakayama A; Ishikawa H; Inaba K; Satoh N
    Genesis; 2002 Aug; 33(4):153-4. PubMed ID: 12203911
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The significance of Ciona intestinalis as a stem organism in integrative studies of functional evolution of the chordate endocrine, neuroendocrine, and nervous systems.
    Matsubara S; Kawada T; Sakai T; Aoyama M; Osugi T; Shiraishi A; Satake H
    Gen Comp Endocrinol; 2016 Feb; 227():101-8. PubMed ID: 26031189
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A genomewide survey of developmentally relevant genes in Ciona intestinalis. VII. Molecules involved in the regulation of cell polarity and actin dynamics.
    Sasakura Y; Yamada L; Takatori N; Satou Y; Satoh N
    Dev Genes Evol; 2003 Jun; 213(5-6):273-83. PubMed ID: 12740699
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.