BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 29367628)

  • 1. The inhibition of UBC13 expression and blockage of the DNMT1-CHFR-Aurora A pathway contribute to paclitaxel resistance in ovarian cancer.
    Zhang X; Feng Y; Wang XY; Zhang YN; Yuan CN; Zhang SF; Shen YM; Fu YF; Zhou CY; Li X; Cheng XD; Lu WG; Xie X
    Cell Death Dis; 2018 Jan; 9(2):93. PubMed ID: 29367628
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CHFR: a key checkpoint component implicated in a wide range of cancers.
    Sanbhnani S; Yeong FM
    Cell Mol Life Sci; 2012 May; 69(10):1669-87. PubMed ID: 22159584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unraveling role of ubiquitination in drug resistance of gynecological cancer.
    Yu L; Chen Z; Wu Y; Xu M; Zhong D; Xu H; Zhu W
    Am J Cancer Res; 2024; 14(5):2523-2537. PubMed ID: 38859858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemical Studies and Molecular Dynamic Simulations Reveal the Molecular Basis of Conformational Changes in DNA Methyltransferase-1.
    Ye F; Kong X; Zhang H; Liu Y; Shao Z; Jin J; Cai Y; Zhang R; Li L; Zhang YW; Liu YC; Zhang C; Xie W; Yu K; Ding H; Zhao K; Chen S; Jiang H; Baylin SB; Luo C
    ACS Chem Biol; 2018 Mar; 13(3):772-781. PubMed ID: 29381856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. STON2 negatively modulates stem-like properties in ovarian cancer cells via DNMT1/MUC1 pathway.
    Xu S; Yue Y; Zhang S; Zhou C; Cheng X; Xie X; Wang X; Lu W
    J Exp Clin Cancer Res; 2018 Dec; 37(1):305. PubMed ID: 30518424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. UBE2N Regulates Paclitaxel Sensitivity of Ovarian Cancer via Fos/P53 Axis.
    Zhu Q; Chen J; Pan P; Lin F; Zhang X
    Onco Targets Ther; 2020; 13():12751-12761. PubMed ID: 33363381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impairment of DYRK2 by DNMT1‑mediated transcription augments carcinogenesis in human colorectal cancer.
    Kumamoto T; Yamada K; Yoshida S; Aoki K; Hirooka S; Eto K; Yanaga K; Yoshida K
    Int J Oncol; 2020 Jun; 56(6):1529-1539. PubMed ID: 32236621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coordinated Dialogue between UHRF1 and DNMT1 to Ensure Faithful Inheritance of Methylated DNA Patterns.
    Bronner C; Alhosin M; Hamiche A; Mousli M
    Genes (Basel); 2019 Jan; 10(1):. PubMed ID: 30669400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. UBE2N promotes cell viability and glycolysis by promoting Axin1 ubiquitination in prostate cancer cells.
    Yang B; Chen W; Tao T; Zhang J; Kong D; Hao J; Yu C; Liao G; Gong H
    Biol Direct; 2024 May; 19(1):35. PubMed ID: 38715121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Emerging roles of Aurora-A kinase in cancer therapy resistance.
    Zheng D; Li J; Yan H; Zhang G; Li W; Chu E; Wei N
    Acta Pharm Sin B; 2023 Jul; 13(7):2826-2843. PubMed ID: 37521867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CircSLC39A8 attenuates paclitaxel resistance in ovarian cancer by regulating the miR‑185‑5p/BMF axis.
    Liu Y; Shen Z; Wei X; Gu L; Zheng M; Zhang Y; Cheng X; Fu Y; Lu W
    Transl Oncol; 2023 Oct; 36():101746. PubMed ID: 37499410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. UBE2E2 enhances Snail-mediated epithelial-mesenchymal transition and Nrf2-mediated antioxidant activity in ovarian cancer.
    Hong X; Ma N; Li D; Zhang M; Dong W; Huang J; Ci X; Zhang S
    Cell Death Dis; 2023 Feb; 14(2):100. PubMed ID: 36765041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long non-coding RNA SLC25A21-AS1 inhibits the development of epithelial ovarian cancer by specifically inducing PTBP3 degradation.
    Li S; Shen S; Ge W; Cen Y; Zhang S; Cheng X; Wang X; Xie X; Lu W
    Biomark Res; 2023 Jan; 11(1):12. PubMed ID: 36717926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ovarian cancer subtypes based on the regulatory genes of RNA modifications: Novel prediction model of prognosis.
    Zheng P; Li N; Zhan X
    Front Endocrinol (Lausanne); 2022; 13():972341. PubMed ID: 36545327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leveraging the replication stress response to optimize cancer therapy.
    Cybulla E; Vindigni A
    Nat Rev Cancer; 2023 Jan; 23(1):6-24. PubMed ID: 36323800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Network Pharmacology, Molecular Docking, and Experimental Validation to Unveil the Molecular Targets and Mechanisms of Compound Fuling Granule to Treat Ovarian Cancer.
    Li Z; Liu Q; Zhu Y; Wu L; Liu W; Li J; Zhang Z; Tao F
    Oxid Med Cell Longev; 2022; 2022():2896049. PubMed ID: 36062197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Emerging Roles and Therapeutic Implications of Epigenetic Modifications in Ovarian Cancer.
    Wang Y; Huang Z; Li B; Liu L; Huang C
    Front Endocrinol (Lausanne); 2022; 13():863541. PubMed ID: 35620395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biocompatible supramolecular pseudorotaxane hydrogels for controllable release of doxorubicin in ovarian cancer SKOV-3 cells.
    Li C; Li H; Guo J; Li L; Xi X; Yu Y
    RSC Adv; 2020 Jan; 10(2):689-697. PubMed ID: 35494427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global characterization of extrachromosomal circular DNAs in advanced high grade serous ovarian cancer.
    Cen Y; Fang Y; Ren Y; Hong S; Lu W; Xu J
    Cell Death Dis; 2022 Apr; 13(4):342. PubMed ID: 35418185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prognostic utility of the ovarian cancer secretome: a systematic investigation.
    Kamble PR; Breed AA; Pawar A; Kasle G; Pathak BR
    Arch Gynecol Obstet; 2022 Sep; 306(3):639-662. PubMed ID: 35083554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.