BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 29367639)

  • 1. Conformational folding and disulfide bonding drive distinct stages of protein structure formation.
    Lv JM; Lü SQ; Liu ZP; Zhang J; Gao BX; Yao ZY; Wu YX; Potempa LA; Ji SR; Long M; Wu Y
    Sci Rep; 2018 Jan; 8(1):1494. PubMed ID: 29367639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Celluar Folding Determinants and Conformational Plasticity of Native C-Reactive Protein.
    Lv JM; Chen JY; Liu ZP; Yao ZY; Wu YX; Tong CS; Cheng B
    Front Immunol; 2020; 11():583. PubMed ID: 32296446
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intra-subunit Disulfide Determines the Conversion and Structural Stability of CRP Isoforms.
    Zhang CM; Tan YB; Zhou HH; Ge ZB; Feng JR; Lv GB; Sun ZY; Fu Y; Wang MY
    Inflammation; 2020 Apr; 43(2):466-477. PubMed ID: 31760526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Formation of Native Disulfide Bonds: Treading a Fine Line in Protein Folding.
    Narayan M
    Protein J; 2021 Apr; 40(2):134-139. PubMed ID: 33765253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Competition between DsbA-mediated oxidation and conformational folding of RTEM1 beta-lactamase.
    Frech C; Wunderlich M; Glockshuber R; Schmid FX
    Biochemistry; 1996 Sep; 35(35):11386-95. PubMed ID: 8784194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Active-site disruption in native Limulus hemocyanin and its subunits by disulfide-bond reductants: a chemical probe for the study of structure-function relationships in the hemocyanins.
    Topham R; Tesh S; Cole G; Mercatante D; Westcott A; Bonaventura C
    Arch Biochem Biophys; 1998 Apr; 352(1):103-13. PubMed ID: 9521822
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Folding and oxidation of the antibody domain C(H)3.
    Thies MJ; Talamo F; Mayer M; Bell S; Ruoppolo M; Marino G; Buchner J
    J Mol Biol; 2002 Jun; 319(5):1267-77. PubMed ID: 12079363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Folding of small disulfide-rich proteins: clarifying the puzzle.
    Arolas JL; Aviles FX; Chang JY; Ventura S
    Trends Biochem Sci; 2006 May; 31(5):292-301. PubMed ID: 16600598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlation between disulfide reduction and conformational unfolding in bovine pancreatic trypsin inhibitor.
    Ma LC; Anderson S
    Biochemistry; 1997 Mar; 36(12):3728-36. PubMed ID: 9132026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coupling of conformational folding and disulfide-bond reactions in oxidative folding of proteins.
    Welker E; Wedemeyer WJ; Narayan M; Scheraga HA
    Biochemistry; 2001 Aug; 40(31):9059-64. PubMed ID: 11478871
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing the magnitude of folding forces along the oxidative folding pathway of multi-disulfide-containing proteins.
    Narayan M; Xu G; Schultz SK; Scheraga HA
    J Am Chem Soc; 2003 Dec; 125(52):16184-5. PubMed ID: 14692748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic redox environment-intensified disulfide bond shuffling for protein refolding in vitro: molecular simulation and experimental validation.
    Lu D; Liu Z
    J Phys Chem B; 2008 Nov; 112(47):15127-33. PubMed ID: 18959394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of protein conformation on disulfide bond formation in the oxidative folding of ribonuclease T1.
    Frech C; Schmid FX
    J Mol Biol; 1995 Aug; 251(1):135-49. PubMed ID: 7643382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NMR structural analysis of an analog of an intermediate formed in the rate-determining step of one pathway in the oxidative folding of bovine pancreatic ribonuclease A: automated analysis of 1H, 13C, and 15N resonance assignments for wild-type and [C65S, C72S] mutant forms.
    Shimotakahara S; Rios CB; Laity JH; Zimmerman DE; Scheraga HA; Montelione GT
    Biochemistry; 1997 Jun; 36(23):6915-29. PubMed ID: 9188686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disulfide bond rearrangement during formation of the chorionic gonadotropin beta-subunit cystine knot in vivo.
    Wilken JA; Bedows E
    Biochemistry; 2004 May; 43(17):5109-18. PubMed ID: 15109270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Designing out disulfide bonds of leech carboxypeptidase inhibitor: implications for its folding, stability and function.
    Arolas JL; Castillo V; Bronsoms S; Aviles FX; Ventura S
    J Mol Biol; 2009 Sep; 392(2):529-46. PubMed ID: 19559710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disulfide-linked protein folding pathways.
    Mamathambika BS; Bardwell JC
    Annu Rev Cell Dev Biol; 2008; 24():211-35. PubMed ID: 18588487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of a major intermediate in the oxidative folding of leech carboxypeptidase inhibitor: contribution of the fourth disulfide bond.
    Arolas JL; Popowicz GM; Bronsoms S; Aviles FX; Huber R; Holak TA; Ventura S
    J Mol Biol; 2005 Sep; 352(4):961-75. PubMed ID: 16126224
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasticity in the Oxidative Folding Pathway of the High Affinity Nerita Versicolor Carboxypeptidase Inhibitor (NvCI).
    Esperante SA; Covaleda G; Trejo SA; Bronsoms S; Aviles FX; Ventura S
    Sci Rep; 2017 Jul; 7(1):5457. PubMed ID: 28710462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Oxidative refolding of proteins].
    Zhang YY; Yang KY
    Sheng Wu Gong Cheng Xue Bao; 2003 Jan; 19(1):1-8. PubMed ID: 15969027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.