These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Symplectic Foliation Structures of Non-Equilibrium Thermodynamics as Dissipation Model: Application to Metriplectic Nonlinear Lindblad Quantum Master Equation. Barbaresco F Entropy (Basel); 2022 Nov; 24(11):. PubMed ID: 36359716 [TBL] [Abstract][Full Text] [Related]
4. Lie Group Statistics and Lie Group Machine Learning Based on Souriau Lie Groups Thermodynamics & Koszul-Souriau-Fisher Metric: New Entropy Definition as Generalized Casimir Invariant Function in Coadjoint Representation. Barbaresco F Entropy (Basel); 2020 Jun; 22(6):. PubMed ID: 33286414 [TBL] [Abstract][Full Text] [Related]
6. On the origin of chaotic attractors with two zero Lyapunov exponents in a system of five biharmonically coupled phase oscillators. Grines EA; Kazakov A; Sataev IR Chaos; 2022 Sep; 32(9):093105. PubMed ID: 36182377 [TBL] [Abstract][Full Text] [Related]
7. Lie Group Cohomology and (Multi)Symplectic Integrators: New Geometric Tools for Lie Group Machine Learning Based on Souriau Geometric Statistical Mechanics. Barbaresco F; Gay-Balmaz F Entropy (Basel); 2020 Apr; 22(5):. PubMed ID: 33286271 [TBL] [Abstract][Full Text] [Related]
9. Analyzing lyapunov spectra of chaotic dynamical systems. Diakonos FK; Pingel D; Schmelcher P Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Sep; 62(3 Pt B):4413-6. PubMed ID: 11088976 [TBL] [Abstract][Full Text] [Related]
10. Characterization of noise-induced strange nonchaotic attractors. Wang X; Lai YC; Lai CH Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jul; 74(1 Pt 2):016203. PubMed ID: 16907173 [TBL] [Abstract][Full Text] [Related]
11. Euler-Poisson equations on Lie algebras and the N-dimensional heavy rigid body. Ratiu T Proc Natl Acad Sci U S A; 1981 Mar; 78(3):1327-8. PubMed ID: 16592990 [TBL] [Abstract][Full Text] [Related]
12. Mixed-coexistence of periodic orbits and chaotic attractors in an inertial neural system with a nonmonotonic activation function. Song ZG; Xu J; Zhen B Math Biosci Eng; 2019 Jul; 16(6):6406-6425. PubMed ID: 31698569 [TBL] [Abstract][Full Text] [Related]
13. Chaos in the quantum Duffing oscillator in the semiclassical regime under parametrized dissipation. Maris AD; Pokharel B; Seshachallam SG; Misplon MZR; Pattanayak AK Phys Rev E; 2021 Aug; 104(2-1):024206. PubMed ID: 34525518 [TBL] [Abstract][Full Text] [Related]
14. Lyapunov exponents from unstable periodic orbits. Franzosi R; Poggi P; Cerruti-Sola M Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2A):036218. PubMed ID: 15903557 [TBL] [Abstract][Full Text] [Related]
15. Variational principles for stochastic soliton dynamics. Holm DD; Tyranowski TM Proc Math Phys Eng Sci; 2016 Mar; 472(2187):20150827. PubMed ID: 27118922 [TBL] [Abstract][Full Text] [Related]
16. Dynamical phenomena in systems with structurally unstable Poincare homoclinic orbits. Gonchenko SV; Shil'nikov LP; Turaev DV Chaos; 1996 Mar; 6(1):15-31. PubMed ID: 12780232 [TBL] [Abstract][Full Text] [Related]
17. Geometric Aspects of the Isentropic Liquid Dynamics and Vorticity Invariants. Balinsky AA; Blackmore D; Kycia R; Prykarpatski AK Entropy (Basel); 2020 Oct; 22(11):. PubMed ID: 33287009 [TBL] [Abstract][Full Text] [Related]
18. Using Lyapunov exponents to predict the onset of chaos in nonlinear oscillators. Ryabov VB Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jul; 66(1 Pt 2):016214. PubMed ID: 12241468 [TBL] [Abstract][Full Text] [Related]
19. OBSERVING LYAPUNOV EXPONENTS OF INFINITE-DIMENSIONAL DYNAMICAL SYSTEMS. Ott W; Rivas MA; West J J Stat Phys; 2015 Dec; 161(5):1098-1111. PubMed ID: 28066028 [TBL] [Abstract][Full Text] [Related]
20. Phase resetting effects for robust cycles between chaotic sets. Ashwin P; Field M; Rucklidge AM; Sturman R Chaos; 2003 Sep; 13(3):973-81. PubMed ID: 12946190 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]