These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 29367830)
1. Numerical simulations of magnetic resonance elastography using finite element analysis with a linear heterogeneous viscoelastic model. Tomita S; Suzuki H; Kajiwara I; Nakamura G; Jiang Y; Suga M; Obata T; Tadano S J Vis (Tokyo); 2018; 21(1):133-145. PubMed ID: 29367830 [TBL] [Abstract][Full Text] [Related]
2. Multifrequency inversion in magnetic resonance elastography. Papazoglou S; Hirsch S; Braun J; Sack I Phys Med Biol; 2012 Apr; 57(8):2329-46. PubMed ID: 22460134 [TBL] [Abstract][Full Text] [Related]
3. Development of three-dimensional integral-type reconstruction formula for magnetic resonance elastography. Takeda T; Fujiwara H; Suga M Int J Comput Assist Radiol Surg; 2021 Nov; 16(11):1947-1956. PubMed ID: 34694572 [TBL] [Abstract][Full Text] [Related]
4. The simulation of magnetic resonance elastography through atherosclerosis. Thomas-Seale LEJ; Hollis L; Klatt D; Sack I; Roberts N; Pankaj P; Hoskins PR J Biomech; 2016 Jun; 49(9):1781-1788. PubMed ID: 27130475 [TBL] [Abstract][Full Text] [Related]
5. Heterogeneous Multifrequency Direct Inversion (HMDI) for magnetic resonance elastography with application to a clinical brain exam. Barnhill E; Davies PJ; Ariyurek C; Fehlner A; Braun J; Sack I Med Image Anal; 2018 May; 46():180-188. PubMed ID: 29574398 [TBL] [Abstract][Full Text] [Related]
6. Measuring viscoelastic parameters in Magnetic Resonance Elastography: a comparison at high and low magnetic field intensity. Zampini MA; Guidetti M; Royston TJ; Klatt D J Mech Behav Biomed Mater; 2021 Aug; 120():104587. PubMed ID: 34034077 [TBL] [Abstract][Full Text] [Related]
7. Simulation of harmonic shear waves in the human brain and comparison with measurements from magnetic resonance elastography. Li Y; Okamoto R; Badachhape A; Wu C; Bayly P; Daphalapurkar N J Mech Behav Biomed Mater; 2021 Jun; 118():104449. PubMed ID: 33770585 [TBL] [Abstract][Full Text] [Related]
8. Magnetic resonance elastography compared with rotational rheometry for in vitro brain tissue viscoelasticity measurement. Vappou J; Breton E; Choquet P; Goetz C; Willinger R; Constantinesco A MAGMA; 2007 Dec; 20(5-6):273-8. PubMed ID: 18080819 [TBL] [Abstract][Full Text] [Related]
9. Enhanced complex local frequency elastography method for tumor viscoelastic shear modulus reconstruction. Hu L; Shan X Comput Methods Programs Biomed; 2020 Oct; 195():105605. PubMed ID: 32580075 [TBL] [Abstract][Full Text] [Related]
10. Simultaneous magnetic resonance and optical elastography acquisitions: Comparison of displacement images and shear modulus estimations using a single vibration source. Brinker ST; Kearney SP; Royston TJ; Klatt D J Mech Behav Biomed Mater; 2018 Aug; 84():135-144. PubMed ID: 29775815 [TBL] [Abstract][Full Text] [Related]
11. Magnetic resonance elastography of the brain: An in silico study to determine the influence of cranial anatomy. McGrath DM; Ravikumar N; Wilkinson ID; Frangi AF; Taylor ZA Magn Reson Med; 2016 Aug; 76(2):645-62. PubMed ID: 26417988 [TBL] [Abstract][Full Text] [Related]
12. A 2D finite element model for shear wave propagation in biological soft tissues: Application to magnetic resonance elastography. Bilasse M; Chatelin S; Altmeyer G; Marouf A; Vappou J; Charpentier I Int J Numer Method Biomed Eng; 2018 May; ():e3102. PubMed ID: 29740972 [TBL] [Abstract][Full Text] [Related]
13. Numerical simulation of wave propagation through interfaces using the extended finite element method for magnetic resonance elastography. Du Q; Bel-Brunon A; Lambert SA; Hamila N J Acoust Soc Am; 2022 May; 151(5):3481. PubMed ID: 35649898 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of wave delivery methodology for brain MRE: Insights from computational simulations. McGrath DM; Ravikumar N; Beltrachini L; Wilkinson ID; Frangi AF; Taylor ZA Magn Reson Med; 2017 Jul; 78(1):341-356. PubMed ID: 27416890 [TBL] [Abstract][Full Text] [Related]
15. Forward and inverse viscoelastic wave scattering by irregular inclusions for shear wave elastography. Bernard S; Cloutier G J Acoust Soc Am; 2017 Oct; 142(4):2346. PubMed ID: 29092551 [TBL] [Abstract][Full Text] [Related]
16. Identification process based on shear wave propagation within a phantom using finite element modelling and magnetic resonance elastography. Leclerc GE; Charleux F; Ho Ba Tho MC; Bensamoun SF Comput Methods Biomech Biomed Engin; 2015; 18(5):485-91. PubMed ID: 23947476 [TBL] [Abstract][Full Text] [Related]
17. Magnetic resonance elastography of the brain: A study of feasibility and reproducibility using an ergonomic pillow-like passive driver. Huang X; Chafi H; Matthews KL; Carmichael O; Li T; Miao Q; Wang S; Jia G Magn Reson Imaging; 2019 Jun; 59():68-76. PubMed ID: 30858002 [TBL] [Abstract][Full Text] [Related]
18. Anisotropic composite material phantom to improve skeletal muscle characterization using magnetic resonance elastography. Guidetti M; Lorgna G; Hammersly M; Lewis P; Klatt D; Vena P; Shah R; Royston TJ J Mech Behav Biomed Mater; 2019 Jan; 89():199-208. PubMed ID: 30292169 [TBL] [Abstract][Full Text] [Related]
19. Finite element analysis to investigate variability of MR elastography in the human thigh. Hollis L; Barnhill E; Perrins M; Kennedy P; Conlisk N; Brown C; Hoskins PR; Pankaj P; Roberts N Magn Reson Imaging; 2017 Nov; 43():27-36. PubMed ID: 28669751 [TBL] [Abstract][Full Text] [Related]
20. Tabletop magnetic resonance elastography for the measurement of viscoelastic parameters of small tissue samples. Ipek-Ugay S; Drießle T; Ledwig M; Guo J; Hirsch S; Sack I; Braun J J Magn Reson; 2015 Feb; 251():13-8. PubMed ID: 25554945 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]