These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 29367873)

  • 21. Increased susceptibility to drought-induced mortality in Sequoia sempervirens (Cupressaceae) trees under Cenozoic atmospheric carbon dioxide starvation.
    Quirk J; McDowell NG; Leake JR; Hudson PJ; Beerling DJ
    Am J Bot; 2013 Mar; 100(3):582-91. PubMed ID: 23425559
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Low Growth Sensitivity and Fast Replenishment of Non-structural Carbohydrates in a Long-Lived Endangered Conifer After Drought.
    Urrutia-Jalabert R; Lara A; Barichivich J; Vergara N; Rodriguez CG; Piper FI
    Front Plant Sci; 2020; 11():905. PubMed ID: 32733500
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Grading of Robinia pseudoacacia and Platycladus orientalis woodland soil's water availability and productivity in semi-arid region of Loess Plateau].
    Zhang G; Liu X; He K
    Ying Yong Sheng Tai Xue Bao; 2003 Jun; 14(6):858-62. PubMed ID: 12973983
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The dynamics of carbon stored in xylem sapwood to drought-induced hydraulic stress in mature trees.
    Yoshimura K; Saiki ST; Yazaki K; Ogasa MY; Shirai M; Nakano T; Yoshimura J; Ishida A
    Sci Rep; 2016 Apr; 6():24513. PubMed ID: 27079677
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Changes of non-structural carbohydrates in Caryopteris mongolica seedlings during the process of drought-induced mortality].
    Shen C; Ji RX; Yu X; Bai XQ; Chang Y; Liu C
    Ying Yong Sheng Tai Xue Bao; 2019 Aug; 30(8):2541-2548. PubMed ID: 31418176
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Combined effects of defoliation and water stress on pine growth and non-structural carbohydrates.
    Jacquet JS; Bosc A; O'Grady A; Jactel H
    Tree Physiol; 2014 Apr; 34(4):367-76. PubMed ID: 24736390
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Water availability as dominant control of heat stress responses in two contrasting tree species.
    Ruehr NK; Gast A; Weber C; Daub B; Arneth A
    Tree Physiol; 2016 Feb; 36(2):164-78. PubMed ID: 26491055
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Effects of site conditions and tree age on Robinia pseudoacacia and Populus simonii leaf hydraulic traits and drought resistance].
    Li JH; Li YY; Zhao LM; Zuo LX
    Ying Yong Sheng Tai Xue Bao; 2012 Sep; 23(9):2397-403. PubMed ID: 23285994
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Transpiration water consumption of young Platycladus orientalis and Robinia pseudoacacia trees and their correction functions under different water supply].
    Wang J; Huang B; Wang M; Wang D
    Ying Yong Sheng Tai Xue Bao; 2005 Mar; 16(3):419-25. PubMed ID: 15943349
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Drought response strategies define the relative contributions of hydraulic dysfunction and carbohydrate depletion during tree mortality.
    Mitchell PJ; O'Grady AP; Tissue DT; White DA; Ottenschlaeger ML; Pinkard EA
    New Phytol; 2013 Feb; 197(3):862-872. PubMed ID: 23228042
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A multi-species synthesis of physiological mechanisms in drought-induced tree mortality.
    Adams HD; Zeppel MJB; Anderegg WRL; Hartmann H; Landhäusser SM; Tissue DT; Huxman TE; Hudson PJ; Franz TE; Allen CD; Anderegg LDL; Barron-Gafford GA; Beerling DJ; Breshears DD; Brodribb TJ; Bugmann H; Cobb RC; Collins AD; Dickman LT; Duan H; Ewers BE; Galiano L; Galvez DA; Garcia-Forner N; Gaylord ML; Germino MJ; Gessler A; Hacke UG; Hakamada R; Hector A; Jenkins MW; Kane JM; Kolb TE; Law DJ; Lewis JD; Limousin JM; Love DM; Macalady AK; Martínez-Vilalta J; Mencuccini M; Mitchell PJ; Muss JD; O'Brien MJ; O'Grady AP; Pangle RE; Pinkard EA; Piper FI; Plaut JA; Pockman WT; Quirk J; Reinhardt K; Ripullone F; Ryan MG; Sala A; Sevanto S; Sperry JS; Vargas R; Vennetier M; Way DA; Xu C; Yepez EA; McDowell NG
    Nat Ecol Evol; 2017 Sep; 1(9):1285-1291. PubMed ID: 29046541
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Carbohydrate dynamics and mortality in a piñon-juniper woodland under three future precipitation scenarios.
    Dickman LT; McDowell NG; Sevanto S; Pangle RE; Pockman WT
    Plant Cell Environ; 2015 Apr; 38(4):729-39. PubMed ID: 25159277
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Changes of non-structural carbohydrates of Pinus sylvestris var. mongolica seedlings in the process of drought-induced mortality].
    Wang K; Shen C; Cao P; Song LN; Yu GQ
    Ying Yong Sheng Tai Xue Bao; 2018 Nov; 29(11):3513-3520. PubMed ID: 30460797
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Hydrological functions of litters under five typical plantations in southern and northern mountains of Lanzhou City, Northwest China].
    Liu XE; Su SP
    Ying Yong Sheng Tai Xue Bao; 2020 Aug; 31(8):2574-2582. PubMed ID: 34494779
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recovery of Physiological Traits in Saplings of Invasive Bischofia Tree Compared with Three Species Native to the Bonin Islands under Successive Drought and Irrigation Cycles.
    Yazaki K; Kuroda K; Nakano T; Kitao M; Tobita H; Ogasa MY; Ishida A
    PLoS One; 2015; 10(8):e0135117. PubMed ID: 26291326
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of summer drought and winter freezing on stem hydraulic conductivity of Rhododendron species from contrasting climates.
    Cordero RA; Nilsen ET
    Tree Physiol; 2002 Sep; 22(13):919-28. PubMed ID: 12204848
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Ecological and physiological mechanisms of growth decline of Robinia pseudoacacia plantations in the Loess Plateau of China: A review.].
    Wei JS; Li ZS; Feng XY; Zhang Y; Chen WL; Wu X; Jiao L; Wang XC
    Ying Yong Sheng Tai Xue Bao; 2018 Jul; 29(7):2433-2444. PubMed ID: 30039683
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Drought responses of two gymnosperm species with contrasting stomatal regulation strategies under elevated [CO2] and temperature.
    Duan H; O'Grady AP; Duursma RA; Choat B; Huang G; Smith RA; Jiang Y; Tissue DT
    Tree Physiol; 2015 Jul; 35(7):756-70. PubMed ID: 26063706
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prediction of hydraulic conductivity loss from relative water loss: new insights into water storage of tree stems and branches.
    Rosner S; Heinze B; Savi T; Dalla-Salda G
    Physiol Plant; 2019 Apr; 165(4):843-854. PubMed ID: 29923608
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Water relations in tree physiology: where to from here?
    Landsberg J; Waring R; Ryan M
    Tree Physiol; 2017 Jan; 37(1):18-32. PubMed ID: 28173481
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.