BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 29368149)

  • 1. Gold nanoparticle-based colorimetric sensing of dipicolinic acid from complex samples.
    Baig MMF; Chen YC
    Anal Bioanal Chem; 2018 Feb; 410(6):1805-1815. PubMed ID: 29368149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gold nanocluster-based fluorescence sensing probes for detection of dipicolinic acid.
    Baig MMF; Chen YC
    Analyst; 2019 May; 144(10):3289-3296. PubMed ID: 30949633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel Synthesis of Thiolated Gold Nanoclusters Induced by Lanthanides for Ultrasensitive and Luminescent Detection of the Potential Anthrax Spores' Biomarker.
    Halawa MI; Li BS; Xu G
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):32888-32897. PubMed ID: 32575980
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gold nanocluster-europium(III) ratiometric fluorescence assay for dipicolinic acid.
    Li X; Luo J; Jiang X; Yang M; Rasooly A
    Mikrochim Acta; 2021 Jan; 188(1):26. PubMed ID: 33404771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Environmentally Safe Mercury(II) Ions Aided Zero-Background and Ultrasensitive SERS Detection of Dipicolinic Acid.
    Bai XR; Zeng Y; Zhou XD; Wang XH; Shen AG; Hu JM
    Anal Chem; 2017 Oct; 89(19):10335-10342. PubMed ID: 28880066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescent detection of dipicolinic acid as a biomarker of bacterial spores using lanthanide-chelated gold nanoparticles.
    Donmez M; Yilmaz MD; Kilbas B
    J Hazard Mater; 2017 Feb; 324(Pt B):593-598. PubMed ID: 27852519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydroxyapatite nanoparticle based fluorometric turn-on determination of dipicolinic acid, a biomarker of bacterial spores.
    Li Y; Li X; Wang D; Shen C; Yang M
    Mikrochim Acta; 2018 Aug; 185(9):435. PubMed ID: 30167800
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Eriochrome Black T-Eu
    Yilmaz MD; Oktem HA
    Anal Chem; 2018 Mar; 90(6):4221-4225. PubMed ID: 29488375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface-enhanced Raman spectroscopic detection of a bacteria biomarker using gold nanoparticle immobilized substrates.
    Cheng HW; Huan SY; Wu HL; Shen GL; Yu RQ
    Anal Chem; 2009 Dec; 81(24):9902-12. PubMed ID: 19928907
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Monostyryl Boradiazaindacene (BODIPY)-based lanthanide-free colorimetric and fluorogenic probe for sequential sensing of copper (II) ions and dipicolinic acid as a biomarker of bacterial endospores.
    Cetinkaya Y; Yurt MNZ; Avni Oktem H; Yilmaz MD
    J Hazard Mater; 2019 Sep; 377():299-304. PubMed ID: 31173979
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Levels of Ca2+-dipicolinic acid in individual bacillus spores determined using microfluidic Raman tweezers.
    Huang SS; Chen D; Pelczar PL; Vepachedu VR; Setlow P; Li YQ
    J Bacteriol; 2007 Jul; 189(13):4681-7. PubMed ID: 17468248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anti-aggregation of gold nanoparticle-based colorimetric sensor for glutathione with excellent selectivity and sensitivity.
    Li Y; Wu P; Xu H; Zhang H; Zhong X
    Analyst; 2011 Jan; 136(1):196-200. PubMed ID: 20931106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-spore elemental analyses indicate that dipicolinic acid-deficient Bacillus subtilis spores fail to accumulate calcium.
    Hintze PE; Nicholson WL
    Arch Microbiol; 2010 Jun; 192(6):493-7. PubMed ID: 20396869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Label-free colorimetric detection of cadmium ions in rice samples using gold nanoparticles.
    Guo Y; Zhang Y; Shao H; Wang Z; Wang X; Jiang X
    Anal Chem; 2014 Sep; 86(17):8530-4. PubMed ID: 25117533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dipicolinic acid (DPA) assay revisited and appraised for spore detection.
    Hindle AA; Hall EA
    Analyst; 1999 Nov; 124(11):1599-604. PubMed ID: 10746319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Colorimetric detection of Bi (III) in water and drug samples using pyridine-2,6-dicarboxylic acid modified silver nanoparticles.
    Mohammadi S; Khayatian G
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Sep; 148():405-11. PubMed ID: 25919329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of Ca2+ and dipicolinic acid requirement for L-alanine induced germination of Bacillus cereus BIS-59 spores.
    Kamat AS; Lewis NF; Pradhan DS
    Microbios; 1985; 44(177):33-44. PubMed ID: 3938515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly specific colorimetric recognition and sensing of sulfide with glutathione-modified gold nanoparticle probe based on an anion-for-molecule ligand exchange reaction.
    Zhang J; Xu X; Yang X
    Analyst; 2012 Apr; 137(7):1556-8. PubMed ID: 22363930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gold-silver nanoclusters having dipicolinic acid imprinted nanoshell for Bacillus cereus spores recognition.
    Gültekin A; Diltemiz SE; Ersöz A; Sariözlü NY; Denizli A; Say R
    Talanta; 2009 Jun; 78(4-5):1332-8. PubMed ID: 19362197
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A dual-mode nanosensor based on carbon quantum dots and gold nanoparticles for discriminative detection of glutathione in human plasma.
    Shi Y; Pan Y; Zhang H; Zhang Z; Li MJ; Yi C; Yang M
    Biosens Bioelectron; 2014 Jun; 56():39-45. PubMed ID: 24462829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.