These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
590 related articles for article (PubMed ID: 29368202)
1. Differential distribution of metals in tree tissues growing on reclaimed coal mine overburden dumps, Jharia coal field (India). Rana V; Maiti SK Environ Sci Pollut Res Int; 2018 Apr; 25(10):9745-9758. PubMed ID: 29368202 [TBL] [Abstract][Full Text] [Related]
2. Chronological Variation of Metals in Reclaimed Coal Mine Soil and Tissues of Eucalyptus Hybrid Tree After 25 Years of Reclamation, Jharia Coal Field (India). Bandyopadhyay S; Rana V; Maiti SK Bull Environ Contam Toxicol; 2018 Nov; 101(5):604-610. PubMed ID: 30306191 [TBL] [Abstract][Full Text] [Related]
3. Assessment of Heavy Metals Contamination in Reclaimed Mine Soil and their Accumulation and Distribution in Eucalyptus Hybrid. Maiti SK; Rana V Bull Environ Contam Toxicol; 2017 Jan; 98(1):97-104. PubMed ID: 27830288 [TBL] [Abstract][Full Text] [Related]
4. Bioreclamation of coalmine overburden dumps--with special empasis on micronutrients and heavy metals accumulation in tree species. Maiti SK Environ Monit Assess; 2007 Feb; 125(1-3):111-22. PubMed ID: 17180437 [TBL] [Abstract][Full Text] [Related]
5. Biodiversity variability and metal accumulation strategies in plants spontaneously inhibiting fly ash lagoon, India. Mukhopadhyay S; Rana V; Kumar A; Maiti SK Environ Sci Pollut Res Int; 2017 Oct; 24(29):22990-23005. PubMed ID: 28819831 [TBL] [Abstract][Full Text] [Related]
6. Soil quality index for evaluation of reclaimed coal mine spoil. Mukhopadhyay S; Masto RE; Yadav A; George J; Ram LC; Shukla SP Sci Total Environ; 2016 Jan; 542(Pt A):540-50. PubMed ID: 26524272 [TBL] [Abstract][Full Text] [Related]
7. Biomonitoring trace metal contamination by seven sympatric alpine species in Eastern Tibetan Plateau. Bing H; Wu Y; Zhou J; Sun H Chemosphere; 2016 Dec; 165():388-398. PubMed ID: 27668716 [TBL] [Abstract][Full Text] [Related]
8. The evaluation of heavy metal accumulation and application of a comprehensive bio-concentration index for woody species on contaminated sites in Hunan, China. Zhao X; Liu J; Xia X; Chu J; Wei Y; Shi S; Chang E; Yin W; Jiang Z Environ Sci Pollut Res Int; 2014 Apr; 21(7):5076-85. PubMed ID: 24374615 [TBL] [Abstract][Full Text] [Related]
9. Assessment of arbuscular mycorrhizal fungi status and heavy metal accumulation characteristics of tree species in a lead-zinc mine area: potential applications for phytoremediation. Yang Y; Liang Y; Ghosh A; Song Y; Chen H; Tang M Environ Sci Pollut Res Int; 2015 Sep; 22(17):13179-93. PubMed ID: 25929455 [TBL] [Abstract][Full Text] [Related]
10. Geochemical sources of metal contamination in a coal mining area in Chhattisgarh, India using lead isotopic ratios. Das A; Patel SS; Kumar R; Krishna KVSS; Dutta S; Saha MC; Sengupta S; Guha D Chemosphere; 2018 Apr; 197():152-164. PubMed ID: 29339274 [TBL] [Abstract][Full Text] [Related]
11. Soil characterization and differential patterns of heavy metal accumulation in woody plants grown in coal gangue wastelands in Shaanxi, China. Yakun S; Xingmin M; Kairong L; Hongbo S Environ Sci Pollut Res Int; 2016 Jul; 23(13):13489-97. PubMed ID: 27025220 [TBL] [Abstract][Full Text] [Related]
12. Wood and bark of Pinus halepensis as archives of heavy metal pollution in the Mediterranean Region. Rodríguez Martin JA; Gutiérrez C; Torrijos M; Nanos N Environ Pollut; 2018 Aug; 239():438-447. PubMed ID: 29679941 [TBL] [Abstract][Full Text] [Related]
13. Heavy metal accumulation and ecosystem engineering by two common mine site-nesting ant species: implications for pollution-level assessment and bioremediation of coal mine soil. Khan SR; Singh SK; Rastogi N Environ Monit Assess; 2017 Apr; 189(4):195. PubMed ID: 28357721 [TBL] [Abstract][Full Text] [Related]
14. Heavy metals in the soils and plants from a typical restored coal-mining area of Huainan coalfield, China. Niu S; Gao L; Zhao J Environ Monit Assess; 2017 Sep; 189(10):484. PubMed ID: 28868589 [TBL] [Abstract][Full Text] [Related]
15. Heavy metal accumulation by poplar in calcareous soil with various degrees of multi-metal contamination: implications for phytoextraction and phytostabilization. Hu Y; Nan Z; Su J; Wang N Environ Sci Pollut Res Int; 2013 Oct; 20(10):7194-203. PubMed ID: 23681772 [TBL] [Abstract][Full Text] [Related]
16. Phytoextraction of potentially toxic elements by six tree species growing on hazardous mining sludge. Mleczek M; Goliński P; Krzesłowska M; Gąsecka M; Magdziak Z; Rutkowski P; Budzyńska S; Waliszewska B; Kozubik T; Karolewski Z; Niedzielski P Environ Sci Pollut Res Int; 2017 Oct; 24(28):22183-22195. PubMed ID: 28791581 [TBL] [Abstract][Full Text] [Related]
17. A bioassessment of soil nickel genotoxic effect in orchard planted on rehabilitated coalmine overburden. Ličina V; Akšić MF; Colić S; Zec G Ecotoxicol Environ Saf; 2013 Dec; 98():374-82. PubMed ID: 24080096 [TBL] [Abstract][Full Text] [Related]
18. Biomonitoring and phytoremediation potential of the leaves, bark, and branch bark of street trees for heavy metal pollution in urban areas. Liu Y; Zhao X; Liu R; Zhou J; Jiang Z Environ Monit Assess; 2022 Apr; 194(5):344. PubMed ID: 35389092 [TBL] [Abstract][Full Text] [Related]
19. Phytoremedial assessment of flora tolerant to heavy metals in the contaminated soils of an abandoned Pb mine in Central Portugal. Pratas J; Favas PJ; D'Souza R; Varun M; Paul MS Chemosphere; 2013 Feb; 90(8):2216-25. PubMed ID: 23098582 [TBL] [Abstract][Full Text] [Related]
20. Phytoassessment of Vetiver grass enhanced with EDTA soil amendment grown in single and mixed heavy metal-contaminted soil. Ng CC; Boyce AN; Abas MR; Mahmood NZ; Han F Environ Monit Assess; 2019 Jun; 191(7):434. PubMed ID: 31201562 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]