These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 29368451)

  • 1. Regulation of skeletal myotube formation and alignment by nanotopographically controlled cell-secreted extracellular matrix.
    Jiao A; Moerk CT; Penland N; Perla M; Kim J; Smith AST; Murry CE; Kim DH
    J Biomed Mater Res A; 2018 Jun; 106(6):1543-1551. PubMed ID: 29368451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Silk fibroin scaffolds with muscle-like elasticity support in vitro differentiation of human skeletal muscle cells.
    Chaturvedi V; Naskar D; Kinnear BF; Grenik E; Dye DE; Grounds MD; Kundu SC; Coombe DR
    J Tissue Eng Regen Med; 2017 Nov; 11(11):3178-3192. PubMed ID: 27878977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Skeletal muscle patch engineering on synthetic and acellular human skeletal muscle originated scaffolds.
    Ay B; Karaoz E; Kesemenli CC; Kenar H
    J Biomed Mater Res A; 2017 Mar; 105(3):879-890. PubMed ID: 27770546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The use of anisotropic cell sheets to control orientation during the self-organization of 3D muscle tissue.
    Takahashi H; Shimizu T; Nakayama M; Yamato M; Okano T
    Biomaterials; 2013 Oct; 34(30):7372-80. PubMed ID: 23849343
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D myotube guidance on hierarchically organized anisotropic and conductive fibers for skeletal muscle tissue engineering.
    Zhang Y; Zhang Z; Wang Y; Su Y; Chen M
    Mater Sci Eng C Mater Biol Appl; 2020 Nov; 116():111070. PubMed ID: 32806237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction and myogenic differentiation of 3D myoblast tissues fabricated by fibronectin-gelatin nanofilm coating.
    Gribova V; Liu CY; Nishiguchi A; Matsusaki M; Boudou T; Picart C; Akashi M
    Biochem Biophys Res Commun; 2016 Jun; 474(3):515-521. PubMed ID: 27125461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon-based hierarchical scaffolds for myoblast differentiation: Synergy between nano-functionalization and alignment.
    Patel A; Mukundan S; Wang W; Karumuri A; Sant V; Mukhopadhyay SM; Sant S
    Acta Biomater; 2016 Mar; 32():77-88. PubMed ID: 26768231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions between Skeletal Muscle Myoblasts and their Extracellular Matrix Revealed by a Serum Free Culture System.
    Chaturvedi V; Dye DE; Kinnear BF; van Kuppevelt TH; Grounds MD; Coombe DR
    PLoS One; 2015; 10(6):e0127675. PubMed ID: 26030912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrohydrodynamic-direct-printed cell-laden microfibrous structure using alginate-based bioink for effective myotube formation.
    Yeo M; Kim G
    Carbohydr Polym; 2021 Nov; 272():118444. PubMed ID: 34420709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering multi-layered skeletal muscle tissue by using 3D microgrooved collagen scaffolds.
    Chen S; Nakamoto T; Kawazoe N; Chen G
    Biomaterials; 2015 Dec; 73():23-31. PubMed ID: 26398306
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Collagen nanofibre anisotropy induces myotube differentiation and acetylcholine receptor clustering.
    Kung FH; Sillitti D; Shrirao AB; Shreiber DI; Firestein BL
    J Tissue Eng Regen Med; 2018 Apr; 12(4):e2010-e2019. PubMed ID: 29266875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined Effects of Electrical Stimulation and Protein Coatings on Myotube Formation in a Soft Porous Scaffold.
    Iberite F; Gerges I; Vannozzi L; Marino A; Piazzoni M; Santaniello T; Lenardi C; Ricotti L
    Ann Biomed Eng; 2020 Feb; 48(2):734-746. PubMed ID: 31701312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of type IV collagen on myogenic characteristics of IGF-I gene-engineered myoblasts.
    Ito A; Yamamoto M; Ikeda K; Sato M; Kawabe Y; Kamihira M
    J Biosci Bioeng; 2015 May; 119(5):596-603. PubMed ID: 25454061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Etching anisotropic surface topography onto fibrin microthread scaffolds for guiding myoblast alignment.
    Carnes ME; Pins GD
    J Biomed Mater Res B Appl Biomater; 2020 Jul; 108(5):2308-2319. PubMed ID: 31967415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Skeletal myotube formation enhanced by electrospun polyurethane carbon nanotube scaffolds.
    Sirivisoot S; Harrison BS
    Int J Nanomedicine; 2011; 6():2483-97. PubMed ID: 22072883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bone morphogenetic protein signaling inhibitor improves differentiation and function of 3D muscle construct fabricated using C2C12.
    Ding R; Xi Y; Ito A; Shimizu K; Nagamori E; Fujita H; Kawamoto T; Horie M
    J Biosci Bioeng; 2024 Jun; 137(6):480-486. PubMed ID: 38604883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of nano- and micro-scale topological features on alignment of muscle cells and commitment of myogenic differentiation.
    Jana S; Leung M; Chang J; Zhang M
    Biofabrication; 2014 Sep; 6(3):035012. PubMed ID: 24876344
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of cell-extracellular matrix interaction on myogenic characteristics and artificial skeletal muscle tissue.
    Ding R; Horie M; Nagasaka S; Ohsumi S; Shimizu K; Honda H; Nagamori E; Fujita H; Kawamoto T
    J Biosci Bioeng; 2020 Jul; 130(1):98-105. PubMed ID: 32278672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of integrin α7β1 signaling in myoblast differentiation on aligned polydioxanone scaffolds.
    McClure MJ; Clark NM; Hyzy SL; Chalfant CE; Olivares-Navarrete R; Boyan BD; Schwartz Z
    Acta Biomater; 2016 Jul; 39():44-54. PubMed ID: 27142254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering a 3D in vitro model of human skeletal muscle at the single fiber scale.
    Urciuolo A; Serena E; Ghua R; Zatti S; Giomo M; Mattei N; Vetralla M; Selmin G; Luni C; Vitulo N; Valle G; Vitiello L; Elvassore N
    PLoS One; 2020; 15(5):e0232081. PubMed ID: 32374763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.