These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
238 related articles for article (PubMed ID: 29368515)
1. Single-Crystal Graphene-Directed van der Waals Epitaxial Resistive Switching. Sun X; Lu Z; Chen Z; Wang Y; Shi J; Washington M; Lu TM ACS Appl Mater Interfaces; 2018 Feb; 10(7):6730-6736. PubMed ID: 29368515 [TBL] [Abstract][Full Text] [Related]
2. van der Waals Epitaxy of Antimony Islands, Sheets, and Thin Films on Single-Crystalline Graphene. Sun X; Lu Z; Xiang Y; Wang Y; Shi J; Wang GC; Washington MA; Lu TM ACS Nano; 2018 Jun; 12(6):6100-6108. PubMed ID: 29746775 [TBL] [Abstract][Full Text] [Related]
3. Remote epitaxy through graphene enables two-dimensional material-based layer transfer. Kim Y; Cruz SS; Lee K; Alawode BO; Choi C; Song Y; Johnson JM; Heidelberger C; Kong W; Choi S; Qiao K; Almansouri I; Fitzgerald EA; Kong J; Kolpak AM; Hwang J; Kim J Nature; 2017 Apr; 544(7650):340-343. PubMed ID: 28426001 [TBL] [Abstract][Full Text] [Related]
4. Van der Waals Epitaxy of Two-Dimensional MoS2-Graphene Heterostructures in Ultrahigh Vacuum. Miwa JA; Dendzik M; Grønborg SS; Bianchi M; Lauritsen JV; Hofmann P; Ulstrup S ACS Nano; 2015 Jun; 9(6):6502-10. PubMed ID: 26039108 [TBL] [Abstract][Full Text] [Related]
5. Beyond van der Waals Interaction: The Case of MoSe Dau MT; Gay M; Di Felice D; Vergnaud C; Marty A; Beigné C; Renaud G; Renault O; Mallet P; Le Quang T; Veuillen JY; Huder L; Renard VT; Chapelier C; Zamborlini G; Jugovac M; Feyer V; Dappe YJ; Pochet P; Jamet M ACS Nano; 2018 Mar; 12(3):2319-2331. PubMed ID: 29384649 [TBL] [Abstract][Full Text] [Related]
6. Interface Modification of Bernal- and Rhombohedral-Stacked Trilayer-Graphene/Metal Electrode on Resistive Switching of Silver Electrochemical Metallization Cells. Wang JC; Chan YT; Chen WF; Wu MC; Lai CS ACS Appl Mater Interfaces; 2017 Oct; 9(42):37031-37040. PubMed ID: 28959880 [TBL] [Abstract][Full Text] [Related]
7. Remote epitaxy of copper on sapphire through monolayer graphene buffer. Lu Z; Sun X; Xie W; Littlejohn A; Wang GC; Zhang S; Washington MA; Lu TM Nanotechnology; 2018 Nov; 29(44):445702. PubMed ID: 30124437 [TBL] [Abstract][Full Text] [Related]
8. Van der Waals Epitaxial Growth of Two-Dimensional Single-Crystalline GaSe Domains on Graphene. Li X; Basile L; Huang B; Ma C; Lee J; Vlassiouk IV; Puretzky AA; Lin MW; Yoon M; Chi M; Idrobo JC; Rouleau CM; Sumpter BG; Geohegan DB; Xiao K ACS Nano; 2015 Aug; 9(8):8078-88. PubMed ID: 26202730 [TBL] [Abstract][Full Text] [Related]
9. Graphene Substrate for van der Waals Epitaxy of Layer-Structured Bismuth Antimony Telluride Thermoelectric Film. Kim ES; Hwang JY; Lee KH; Ohta H; Lee YH; Kim SW Adv Mater; 2017 Feb; 29(8):. PubMed ID: 27996181 [TBL] [Abstract][Full Text] [Related]
10. Highly Ordered Boron Nitride/Epigraphene Epitaxial Films on Silicon Carbide by Lateral Epitaxial Deposition. Gigliotti J; Li X; Sundaram S; Deniz D; Prudkovskiy V; Turmaud JP; Hu Y; Hu Y; Fossard F; Mérot JS; Loiseau A; Patriarche G; Yoon B; Landman U; Ougazzaden A; Berger C; de Heer WA ACS Nano; 2020 Oct; 14(10):12962-12971. PubMed ID: 32966058 [TBL] [Abstract][Full Text] [Related]
11. Fabrication of vertical van der Waals gap array using single-and multi-layer graphene. Kim S; Bahk YM; Kim D; Yun H; Lim YR; Song W; Kim DS Nanotechnology; 2020 Jan; 31(3):035304. PubMed ID: 31437819 [TBL] [Abstract][Full Text] [Related]
12. Toward Large-Scale Ga Min JH; Li KH; Kim YH; Min JW; Kang CH; Kim KH; Lee JS; Lee KJ; Jeong SM; Lee DS; Bae SY; Ng TK; Ooi BS ACS Appl Mater Interfaces; 2021 Mar; 13(11):13410-13418. PubMed ID: 33709688 [TBL] [Abstract][Full Text] [Related]
13. Vertical MoS Xu R; Jang H; Lee MH; Amanov D; Cho Y; Kim H; Park S; Shin HJ; Ham D Nano Lett; 2019 Apr; 19(4):2411-2417. PubMed ID: 30896171 [TBL] [Abstract][Full Text] [Related]
14. In silico carbon molecular beam epitaxial growth of graphene on the h-BN substrate: carbon source effect on van der Waals epitaxy. Lee J; Varshney V; Park J; Farmer BL; Roy AK Nanoscale; 2016 May; 8(18):9704-13. PubMed ID: 27108606 [TBL] [Abstract][Full Text] [Related]
15. In-situ epitaxial growth of graphene/h-BN van der Waals heterostructures by molecular beam epitaxy. Zuo Z; Xu Z; Zheng R; Khanaki A; Zheng JG; Liu J Sci Rep; 2015 Oct; 5():14760. PubMed ID: 26442629 [TBL] [Abstract][Full Text] [Related]
16. Van der Waals Heteroepitaxy of Air-Stable Quasi-Free-Standing Silicene Layers on CVD Epitaxial Graphene/6H-SiC. Ben Jabra Z; Abel M; Fabbri F; Aqua JN; Koudia M; Michon A; Castrucci P; Ronda A; Vach H; De Crescenzi M; Berbezier I ACS Nano; 2022 Apr; 16(4):5920-5931. PubMed ID: 35294163 [TBL] [Abstract][Full Text] [Related]
17. Tuning electronic transport in epitaxial graphene-based van der Waals heterostructures. Lin YC; Li J; de la Barrera SC; Eichfeld SM; Nie Y; Addou R; Mende PC; Wallace RM; Cho K; Feenstra RM; Robinson JA Nanoscale; 2016 Apr; 8(16):8947-54. PubMed ID: 27073972 [TBL] [Abstract][Full Text] [Related]
18. Principle of direct van der Waals epitaxy of single-crystalline films on epitaxial graphene. Kim J; Bayram C; Park H; Cheng CW; Dimitrakopoulos C; Ott JA; Reuter KB; Bedell SW; Sadana DK Nat Commun; 2014 Sep; 5():4836. PubMed ID: 25208642 [TBL] [Abstract][Full Text] [Related]
19. Van der Waals epitaxy of nearly single-crystalline nitride films on amorphous graphene-glass wafer. Ren F; Liu B; Chen Z; Yin Y; Sun J; Zhang S; Jiang B; Liu B; Liu Z; Wang J; Liang M; Yuan G; Yan J; Wei T; Yi X; Wang J; Zhang Y; Li J; Gao P; Liu Z; Liu Z Sci Adv; 2021 Jul; 7(31):. PubMed ID: 34330700 [TBL] [Abstract][Full Text] [Related]