BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 29368925)

  • 1. Establishment of Molecular Design Strategy To Obtain Activatable Fluorescent Probes for Carboxypeptidases.
    Kuriki Y; Kamiya M; Kubo H; Komatsu T; Ueno T; Tachibana R; Hayashi K; Hanaoka K; Yamashita S; Ishizawa T; Kokudo N; Urano Y
    J Am Chem Soc; 2018 Feb; 140(5):1767-1773. PubMed ID: 29368925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modular Design Platform for Activatable Fluorescence Probes Targeting Carboxypeptidases Based on ProTide Chemistry.
    Kuriki Y; Sogawa M; Komatsu T; Kawatani M; Fujioka H; Fujita K; Ueno T; Hanaoka K; Kojima R; Hino R; Ueo H; Ueo H; Kamiya M; Urano Y
    J Am Chem Soc; 2024 Jan; 146(1):521-531. PubMed ID: 38110248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence Probes for Imaging Basic Carboxypeptidase Activity in Living Cells with High Intracellular Retention.
    Iwaki H; Kamiya M; Kawatani M; Kojima R; Yamasoba T; Urano Y
    Anal Chem; 2021 Feb; 93(7):3470-3476. PubMed ID: 33566568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Novel Bio-imaging Tools Based on the Precise Design of Functional Fluorescence Probes].
    Kamiya M
    Yakugaku Zasshi; 2016; 136(10):1355-1365. PubMed ID: 27725384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel live imaging techniques of cellular functions and in vivo tumors based on precise design of small molecule-based 'activatable' fluorescence probes.
    Urano Y
    Curr Opin Chem Biol; 2012 Dec; 16(5-6):602-8. PubMed ID: 23149093
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rational design of highly sensitive fluorescence probes for protease and glycosidase based on precisely controlled spirocyclization.
    Sakabe M; Asanuma D; Kamiya M; Iwatate RJ; Hanaoka K; Terai T; Nagano T; Urano Y
    J Am Chem Soc; 2013 Jan; 135(1):409-14. PubMed ID: 23205758
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ethanol dependence of alpha 1-antitrypsin C-terminal Lys truncation mediated by basic carboxypeptidases.
    Matthiessen HP; Willemse J; Weber A; Turecek PL; Deiteren K; Hendriks D; Ehrlich HJ; Schwarz HP
    Transfusion; 2008 Feb; 48(2):314-20. PubMed ID: 18028276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [In vivo cancer detection with a newly designed fluorescent probe].
    Urano Y
    Gan To Kagaku Ryoho; 2013 Mar; 40(3):299-303. PubMed ID: 23507591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Asymmetric Rhodamine-Based Fluorescent Probe for Multicolour In Vivo Imaging.
    Iwatate RJ; Kamiya M; Urano Y
    Chemistry; 2016 Jan; 22(5):1696-703. PubMed ID: 26744125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carboxypeptidases in disease: insights from peptidomic studies.
    Sapio MR; Fricker LD
    Proteomics Clin Appl; 2014 Jun; 8(5-6):327-37. PubMed ID: 24470285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence imaging of tumors with "smart" pH-activatable targeted probes.
    Asanuma D; Kobayashi H; Nagano T; Urano Y
    Methods Mol Biol; 2009; 574():47-62. PubMed ID: 19685299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular design strategy of fluorogenic probes based on quantum chemical prediction of intramolecular spirocyclization.
    Tachibana R; Kamiya M; Suzuki S; Morokuma K; Nanjo A; Urano Y
    Commun Chem; 2020 Jun; 3(1):82. PubMed ID: 36703479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanomaterial-based activatable imaging probes: from design to biological applications.
    Li J; Cheng F; Huang H; Li L; Zhu JJ
    Chem Soc Rev; 2015 Nov; 44(21):7855-80. PubMed ID: 26214317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a highly specific rhodamine-based fluorescence probe for hypochlorous acid and its application to real-time imaging of phagocytosis.
    Kenmoku S; Urano Y; Kojima H; Nagano T
    J Am Chem Soc; 2007 Jun; 129(23):7313-8. PubMed ID: 17506554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo imaging of intraperitoneally disseminated tumors in model mice by using activatable fluorescent small-molecular probes for activity of cathepsins.
    Fujii T; Kamiya M; Urano Y
    Bioconjug Chem; 2014 Oct; 25(10):1838-46. PubMed ID: 25196809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aggregation-induced emission spectral shift as a measure of local concentration of a pH-activatable rhodamine-based smart probe.
    Arsov Z; Urbančič I; Štrancar J
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Feb; 190():486-493. PubMed ID: 28965064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FRET-based small-molecule fluorescent probes: rational design and bioimaging applications.
    Yuan L; Lin W; Zheng K; Zhu S
    Acc Chem Res; 2013 Jul; 46(7):1462-73. PubMed ID: 23419062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence imaging of lysosomal hydrogen selenide under oxygen-controlled conditions.
    Tian Y; Xin F; Jing J; Zhang X
    J Mater Chem B; 2019 May; 7(17):2829-2834. PubMed ID: 32255085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of a digestive carboxypeptidase from the insect pest corn earworm (Helicoverpa armigera) with novel specificity towards C-terminal glutamate residues.
    Bown DP; Gatehouse JA
    Eur J Biochem; 2004 May; 271(10):2000-11. PubMed ID: 15128309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance of a new fluorescence-labeled MMP inhibitor to image tumor MMP activity in vivo in comparison to an MMP-activatable probe.
    Waschkau B; Faust A; Schäfers M; Bremer C
    Contrast Media Mol Imaging; 2013; 8(1):1-11. PubMed ID: 23109387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.