BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

377 related articles for article (PubMed ID: 29368945)

  • 1. Acute high-fat diet upregulates glutamatergic signaling in the dorsal motor nucleus of the vagus.
    Clyburn C; Travagli RA; Browning KN
    Am J Physiol Gastrointest Liver Physiol; 2018 May; 314(5):G623-G634. PubMed ID: 29368945
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brainstem astrocytes control homeostatic regulation of caloric intake.
    Clyburn C; Carson KE; Smith CR; Travagli RA; Browning KN
    J Physiol; 2023 Feb; 601(4):801-829. PubMed ID: 36696965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exposure to a high fat diet during the perinatal period alters vagal motoneurone excitability, even in the absence of obesity.
    Bhagat R; Fortna SR; Browning KN
    J Physiol; 2015 Jan; 593(1):285-303. PubMed ID: 25556801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DMV extrasynaptic NMDA receptors regulate caloric intake in rats.
    Clyburn C; Travagli RA; Arnold AC; Browning KN
    JCI Insight; 2021 May; 6(9):. PubMed ID: 33764905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Perinatal high-fat diet alters development of GABA
    Clyburn C; Howe CA; Arnold AC; Lang CH; Travagli RA; Browning KN
    Am J Physiol Gastrointest Liver Physiol; 2019 Jul; 317(1):G40-G50. PubMed ID: 31042399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Involvement of glutamate in gastrointestinal vago-vagal reflexes initiated by gastrointestinal distention in the rat.
    Zhang X; Fogel R
    Auton Neurosci; 2003 Jan; 103(1-2):19-37. PubMed ID: 12531396
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prolactin-releasing peptide affects gastric motor function in rat by modulating synaptic transmission in the dorsal vagal complex.
    Grabauskas G; Zhou SY; Das S; Lu Y; Owyang C; Moises HC
    J Physiol; 2004 Dec; 561(Pt 3):821-39. PubMed ID: 15486017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Perinatal high-fat diet exposure alters oxytocin and corticotropin releasing factor inputs onto vagal neurocircuits controlling gastric motility.
    Carson KE; Alvarez J; Mackley JQ; Travagli RA; Browning KN
    J Physiol; 2023 Jul; 601(14):2853-2875. PubMed ID: 37154244
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Perinatal high fat diet increases inhibition of dorsal motor nucleus of the vagus neurons regulating gastric functions.
    McMenamin CA; Travagli RA; Browning KN
    Neurogastroenterol Motil; 2018 Jan; 30(1):. PubMed ID: 28762595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sex differences in GABAergic neurotransmission to rat DMV neurons.
    Jiang Y; Babic T; Travagli RA
    Am J Physiol Gastrointest Liver Physiol; 2019 Oct; 317(4):G476-G483. PubMed ID: 31393788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vagally evoked synaptic currents in the immature rat nucleus tractus solitarii in an intact in vitro preparation.
    Smith BN; Dou P; Barber WD; Dudek FE
    J Physiol; 1998 Oct; 512 ( Pt 1)(Pt 1):149-62. PubMed ID: 9729625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasticity in the brainstem vagal circuits controlling gastric motor function triggered by corticotropin releasing factor.
    Browning KN; Babic T; Toti L; Holmes GM; Coleman FH; Travagli RA
    J Physiol; 2014 Oct; 592(20):4591-605. PubMed ID: 25128570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vagal afferent fibres determine the oxytocin-induced modulation of gastric tone.
    Holmes GM; Browning KN; Babic T; Fortna SR; Coleman FH; Travagli RA
    J Physiol; 2013 Jun; 591(12):3081-100. PubMed ID: 23587885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stress-induced neuroplasticity in the gastric response to brainstem oxytocin in male rats.
    Jiang Y; Zimmerman JE; Browning KN; Travagli RA
    Am J Physiol Gastrointest Liver Physiol; 2022 May; 322(5):G513-G522. PubMed ID: 35170350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High fat diet attenuates glucose-dependent facilitation of 5-HT3 -mediated responses in rat gastric vagal afferents.
    Troy AE; Simmonds SS; Stocker SD; Browning KN
    J Physiol; 2016 Jan; 594(1):99-114. PubMed ID: 26456775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Roux-en-Y gastric bypass reverses the effects of diet-induced obesity to inhibit the responsiveness of central vagal motoneurones.
    Browning KN; Fortna SR; Hajnal A
    J Physiol; 2013 May; 591(9):2357-72. PubMed ID: 23459752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Daily changes in neuronal activities of the dorsal motor nucleus of the vagus under standard and high-fat diet.
    Chrobok L; Klich JD; Jeczmien-Lazur JS; Pradel K; Palus-Chramiec K; Sanetra AM; Piggins HD; Lewandowski MH
    J Physiol; 2022 Feb; 600(4):733-749. PubMed ID: 34053067
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vagally-regulated gastric motor activity: evidence for kainate and NMDA receptor mediation.
    Sivarao DV; Krowicki ZK; Abrahams TP; Hornby PJ
    Eur J Pharmacol; 1999 Mar; 368(2-3):173-82. PubMed ID: 10193653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vagally mediated gastric effects of brain stem α
    Jiang Y; Browning KN; Toti L; Travagli RA
    Am J Physiol Gastrointest Liver Physiol; 2018 Apr; 314(4):G504-G516. PubMed ID: 29351390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The substantia nigra modulates proximal colon tone and motility in a vagally-dependent manner in the rat.
    Xing T; Nanni G; Burkholder CR; Browning KN; Travagli RA
    J Physiol; 2023 Nov; 601(21):4751-4766. PubMed ID: 37772988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.