These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 29369045)

  • 1. Spine morphology and energetics: how principles from nature apply to robotics.
    Yesilevskiy Y; Yang W; Remy CD
    Bioinspir Biomim; 2018 Mar; 13(3):036002. PubMed ID: 29369045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An inelastic quadrupedal model discovers four-beat walking, two-beat running, and pseudo-elastic actuation as energetically optimal.
    Polet DT; Bertram JEA
    PLoS Comput Biol; 2019 Nov; 15(11):e1007444. PubMed ID: 31751339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generating high-speed dynamic running gaits in a quadruped robot using an evolutionary search.
    Krasny DP; Orin DE
    IEEE Trans Syst Man Cybern B Cybern; 2004 Aug; 34(4):1685-96. PubMed ID: 15462436
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gait studies for a quadrupedal microrobot reveal contrasting running templates in two frequency regimes.
    Goldberg B; Doshi N; Jayaram K; Wood RJ
    Bioinspir Biomim; 2017 Jun; 12(4):046005. PubMed ID: 28485300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. BigDog-inspired studies in the locomotion of goats and dogs.
    Lee DV; Biewener AA
    Integr Comp Biol; 2011 Jul; 51(1):190-202. PubMed ID: 21659392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolving locomotion for a 12-DOF quadruped robot in simulated environments.
    Klaus G; Glette K; Høvin M
    Biosystems; 2013 May; 112(2):102-6. PubMed ID: 23499813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Linking Gait Dynamics to Mechanical Cost of Legged Locomotion.
    Lee DV; Harris SL
    Front Robot AI; 2018; 5():111. PubMed ID: 33500990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arbitrary Symmetric Running Gait Generation for an Underactuated Biped Model.
    Dadashzadeh B; Esmaeili M; Macnab C
    PLoS One; 2017; 12(1):e0170122. PubMed ID: 28118401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A galloping quadruped model using left-right asymmetry in touchdown angles.
    Tanase M; Ambe Y; Aoi S; Matsuno F
    J Biomech; 2015 Sep; 48(12):3383-9. PubMed ID: 26216144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Viscoelastic legs for open-loop control of gram-scale robots.
    St Pierre R; Gao W; Clark JE; Bergbreiter S
    Bioinspir Biomim; 2020 Jul; 15(5):055005. PubMed ID: 32580172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stride lengths, speed and energy costs in walking of Australopithecus afarensis: using evolutionary robotics to predict locomotion of early human ancestors.
    Sellers WI; Cain GM; Wang W; Crompton RH
    J R Soc Interface; 2005 Dec; 2(5):431-41. PubMed ID: 16849203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy evaluation of a bio-inspired gait modulation method for quadrupedal locomotion.
    Fukuoka Y; Fukino K; Habu Y; Mori Y
    Bioinspir Biomim; 2015 Aug; 10(4):046017. PubMed ID: 26241690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elastic energy in locomotion: Spring-mass vs. poly-articulated models.
    Moretto P; Villeger D; Costes A; Watier B
    Gait Posture; 2016 Jul; 48():183-188. PubMed ID: 27285478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring diagonal gait using a forward dynamic three-dimensional chimpanzee simulation.
    Sellers WI; Margetts L; Bates KT; Chamberlain AT
    Folia Primatol (Basel); 2013; 84(3-5):180-200. PubMed ID: 23867835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control and study of bio-inspired quadrupedal gaits on an underactuated miniature robot.
    Askari M; Ugur M; Mahkam N; Yeldan A; Ozcan O
    Bioinspir Biomim; 2023 Jan; 18(2):. PubMed ID: 36608346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gait as solution, but what is the problem? Exploring cost, economy and compromise in locomotion.
    Bertram JE
    Vet J; 2013 Dec; 198 Suppl 1():e3-8. PubMed ID: 24149060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Asymmetric bipedal locomotion--an adaptive response to incomplete spinal injury in the chick.
    Muir GD; Katz SL; Gosline JM; Steeves JD
    Exp Brain Res; 1998 Oct; 122(3):275-82. PubMed ID: 9808300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Whole-body mechanics and gaits in the gray short-tailed opossum Monodelphis domestica: integrating patterns of locomotion in a semi-erect mammal.
    Parchman AJ; Reilly SM; Biknevicius AR
    J Exp Biol; 2003 Apr; 206(Pt 8):1379-88. PubMed ID: 12624172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Divergent evolution of terrestrial locomotor abilities in extant Crocodylia.
    Hutchinson JR; Felkler D; Houston K; Chang YM; Brueggen J; Kledzik D; Vliet KA
    Sci Rep; 2019 Dec; 9(1):19302. PubMed ID: 31848420
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elastic coupling of limb joints enables faster bipedal walking.
    Dean JC; Kuo AD
    J R Soc Interface; 2009 Jun; 6(35):561-73. PubMed ID: 18957360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.