These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 29369451)
1. Feasibility of single-shot multi-level multi-angle diffusion tensor imaging of the human cervical spinal cord at 7T. Massire A; Rasoanandrianina H; Taso M; Guye M; Ranjeva JP; Feiweier T; Callot V Magn Reson Med; 2018 Sep; 80(3):947-957. PubMed ID: 29369451 [No Abstract] [Full Text] [Related]
2. Ultra-high-b radial diffusion-weighted imaging (UHb-rDWI) of human cervical spinal cord. Thapa B; Sapkota N; Lee Y; Jeong K; Rose J; Shah LM; Bisson E; Jeong EK J Magn Reson Imaging; 2019 Jan; 49(1):204-211. PubMed ID: 29707845 [TBL] [Abstract][Full Text] [Related]
3. Analysis of diffusion tensor measurements of the human cervical spinal cord based on semiautomatic segmentation of the white and gray matter. Dostál M; Keřkovský M; Korit Áková E; Němcová E; Stulík J; Staňková M; Bernard V J Magn Reson Imaging; 2018 Nov; 48(5):1217-1227. PubMed ID: 29707834 [TBL] [Abstract][Full Text] [Related]
4. High-resolution multi-parametric quantitative magnetic resonance imaging of the human cervical spinal cord at 7T. Massire A; Taso M; Besson P; Guye M; Ranjeva JP; Callot V Neuroimage; 2016 Dec; 143():58-69. PubMed ID: 27574985 [TBL] [Abstract][Full Text] [Related]
5. Diffusion tensor imaging focusing on lower cervical spinal cord using 2D reduced FOV interleaved multislice single-shot diffusion-weighted echo-planar imaging: comparison with conventional single-shot diffusion-weighted echo-planar imaging. Park EH; Lee YH; Jeong EK; Roh YH; Suh JS Magn Reson Imaging; 2015 May; 33(4):401-6. PubMed ID: 25614215 [TBL] [Abstract][Full Text] [Related]
6. Magnetic resonance imaging of the cervical spinal cord in multiple sclerosis at 7T. Dula AN; Pawate S; Dortch RD; Barry RL; George-Durrett KM; Lyttle BD; Dethrage LM; Gore JC; Smith SA Mult Scler; 2016 Mar; 22(3):320-8. PubMed ID: 26209591 [TBL] [Abstract][Full Text] [Related]
7. Application value of diffusional kurtosis imaging (DKI) in evaluating microstructural changes in the spinal cord of patients with early cervical spondylotic myelopathy. Li D; Wang X Clin Neurol Neurosurg; 2017 May; 156():71-76. PubMed ID: 28349894 [TBL] [Abstract][Full Text] [Related]
8. Diffusion tensor imaging in spinal cord compression. Wang W; Qin W; Hao N; Wang Y; Zong G Acta Radiol; 2012 Oct; 53(8):921-8. PubMed ID: 22893728 [TBL] [Abstract][Full Text] [Related]
9. Diffusion tensor imaging of white and grey matter within the spinal cord of normal Beagle dogs: Sub-regional differences of the various diffusion parameters. Yoon H; Park NW; Ha YM; Kim J; Moon WJ; Eom K Vet J; 2016 Sep; 215():110-7. PubMed ID: 27080199 [TBL] [Abstract][Full Text] [Related]
10. Phase-correcting non-local means filtering for diffusion-weighted imaging of the spinal cord. Kafali SG; Çukur T; Saritas EU Magn Reson Med; 2018 Sep; 80(3):1020-1035. PubMed ID: 29427379 [No Abstract] [Full Text] [Related]
11. Thermal stimulus task fMRI in the cervical spinal cord at 7 Tesla. Seifert AC; Xu J; Kong Y; Eippert F; Miller KL; Tracey I; Vannesjo SJ Hum Brain Mapp; 2024 Feb; 45(3):e26597. PubMed ID: 38375948 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of microstructural changes in spinal cord of patients with degenerative cervical myelopathy by diffusion kurtosis imaging and investigate the correlation with JOA score. Liu Z; Bian B; Wang G; Tian C; Lv Z; Shao Z; Li D BMC Neurol; 2020 May; 20(1):185. PubMed ID: 32404188 [TBL] [Abstract][Full Text] [Related]
13. Feasibility of human spinal cord perfusion mapping using dynamic susceptibility contrast imaging at 7T: Preliminary results and identified guidelines. Lévy S; Roche PH; Guye M; Callot V Magn Reson Med; 2021 Mar; 85(3):1183-1194. PubMed ID: 33151009 [TBL] [Abstract][Full Text] [Related]
14. Application of Quantitative Microstructural MR Imaging with Atlas-based Analysis for the Spinal Cord in Cervical Spondylotic Myelopathy. Hori M; Hagiwara A; Fukunaga I; Ueda R; Kamiya K; Suzuki Y; Liu W; Murata K; Takamura T; Hamasaki N; Irie R; Kamagata K; Kumamaru KK; Suzuki M; Aoki S Sci Rep; 2018 Mar; 8(1):5213. PubMed ID: 29581458 [TBL] [Abstract][Full Text] [Related]
15. High-fidelity diffusion tensor imaging of the cervical spinal cord using point-spread-function encoded EPI. Li S; Wang Y; Hu Z; Guan L; Hai Y; Zhang H; He L; Jiang W; Guo H Neuroimage; 2021 Aug; 236():118043. PubMed ID: 33857617 [TBL] [Abstract][Full Text] [Related]
16. Voxelwise analysis of diffusion MRI of cervical spinal cord using tract-based spatial statistics. Dostál M; Keřkovský M; Staffa E; Bednařík J; Šprláková-Puková A; Mechl M Magn Reson Imaging; 2020 Nov; 73():23-30. PubMed ID: 32688050 [TBL] [Abstract][Full Text] [Related]
17. A method for correcting breathing-induced field fluctuations in T2*-weighted spinal cord imaging using a respiratory trace. Vannesjo SJ; Clare S; Kasper L; Tracey I; Miller KL Magn Reson Med; 2019 Jun; 81(6):3745-3753. PubMed ID: 30737825 [TBL] [Abstract][Full Text] [Related]
18. The Reliability of Reduced Field-of-view DTI for Highly Accurate Quantitative Assessment of Cervical Spinal Cord Tracts. Yokohama T; Iwasaki M; Oura D; Furuya S; Okuaki T Magn Reson Med Sci; 2019 Jan; 18(1):36-43. PubMed ID: 29576582 [TBL] [Abstract][Full Text] [Related]
19. Spinal cord imaging using averaged magnetization inversion recovery acquisitions. Weigel M; Bieri O Magn Reson Med; 2018 Apr; 79(4):1870-1881. PubMed ID: 28714105 [TBL] [Abstract][Full Text] [Related]
20. Analysis of the diffusion tensor imaging parameters of a normal cervical spinal cord in a healthy population. Wei LF; Wang SS; Zheng ZC; Tian J; Xue L J Spinal Cord Med; 2017 May; 40(3):338-345. PubMed ID: 27814138 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]