These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 29369461)
1. Modulation of AKR1C2 by curcumin decreases testosterone production in prostate cancer. Ide H; Lu Y; Noguchi T; Muto S; Okada H; Kawato S; Horie S Cancer Sci; 2018 Apr; 109(4):1230-1238. PubMed ID: 29369461 [TBL] [Abstract][Full Text] [Related]
2. Therapeutic potential of targeting AKR1C2 in the treatment of prostate cancer. Nie M; Li T; Liu P; Wang X Mol Biol Rep; 2024 Sep; 51(1):994. PubMed ID: 39292292 [TBL] [Abstract][Full Text] [Related]
3. Human type 3 3alpha-hydroxysteroid dehydrogenase (aldo-keto reductase 1C2) and androgen metabolism in prostate cells. Rizner TL; Lin HK; Peehl DM; Steckelbroeck S; Bauman DR; Penning TM Endocrinology; 2003 Jul; 144(7):2922-32. PubMed ID: 12810547 [TBL] [Abstract][Full Text] [Related]
4. Interleukin-6 regulates androgen synthesis in prostate cancer cells. Chun JY; Nadiminty N; Dutt S; Lou W; Yang JC; Kung HJ; Evans CP; Gao AC Clin Cancer Res; 2009 Aug; 15(15):4815-22. PubMed ID: 19638459 [TBL] [Abstract][Full Text] [Related]
5. Role of human type 3 3alpha-hydroxysteroid dehydrogenase (AKR1C2) in androgen metabolism of prostate cancer cells. Rizner TL; Lin HK; Penning TM Chem Biol Interact; 2003 Feb; 143-144():401-9. PubMed ID: 12604227 [TBL] [Abstract][Full Text] [Related]
6. Prostate cancer stromal cells and LNCaP cells coordinately activate the androgen receptor through synthesis of testosterone and dihydrotestosterone from dehydroepiandrosterone. Mizokami A; Koh E; Izumi K; Narimoto K; Takeda M; Honma S; Dai J; Keller ET; Namiki M Endocr Relat Cancer; 2009 Dec; 16(4):1139-55. PubMed ID: 19608712 [TBL] [Abstract][Full Text] [Related]
7. Curcumin analogues with high activity for inhibiting human prostate cancer cell growth and androgen receptor activation. Zhou DY; Ding N; Du ZY; Cui XX; Wang H; Wei XC; Conney AH; Zhang K; Zheng X Mol Med Rep; 2014 Sep; 10(3):1315-22. PubMed ID: 25060817 [TBL] [Abstract][Full Text] [Related]
8. Pomegranate extracts impact the androgen biosynthesis pathways in prostate cancer models in vitro and in vivo. Ming DS; Pham S; Deb S; Chin MY; Kharmate G; Adomat H; Beheshti EH; Locke J; Guns ET J Steroid Biochem Mol Biol; 2014 Sep; 143():19-28. PubMed ID: 24565566 [TBL] [Abstract][Full Text] [Related]
9. Effects of Curcumin Combined With the 5-alpha Reductase Inhibitor Dutasteride on LNCaP Prostate Cancer Cells. Nakayama A; Ide H; Lu Y; Takei A; Fukuda K; Osaka A; Arai G; Horie S; Okada H; Saito K In Vivo; 2021; 35(3):1443-1450. PubMed ID: 33910821 [TBL] [Abstract][Full Text] [Related]
10. New steroidal 17β-carboxy derivatives present anti-5α-reductase activity and anti-proliferative effects in a human androgen-responsive prostate cancer cell line. Amaral C; Varela C; Correia-da-Silva G; Tavares da Silva E; Carvalho RA; Costa SC; Cunha SC; Fernandes JO; Teixeira N; Roleira FM Biochimie; 2013 Nov; 95(11):2097-106. PubMed ID: 23933094 [TBL] [Abstract][Full Text] [Related]
11. Increased expression of genes converting adrenal androgens to testosterone in androgen-independent prostate cancer. Stanbrough M; Bubley GJ; Ross K; Golub TR; Rubin MA; Penning TM; Febbo PG; Balk SP Cancer Res; 2006 Mar; 66(5):2815-25. PubMed ID: 16510604 [TBL] [Abstract][Full Text] [Related]
12. Evidence of limited contributions for intratumoral steroidogenesis in prostate cancer. Hofland J; van Weerden WM; Dits NF; Steenbergen J; van Leenders GJ; Jenster G; Schröder FH; de Jong FH Cancer Res; 2010 Feb; 70(3):1256-64. PubMed ID: 20086173 [TBL] [Abstract][Full Text] [Related]
13. Impaired dihydrotestosterone catabolism in human prostate cancer: critical role of AKR1C2 as a pre-receptor regulator of androgen receptor signaling. Ji Q; Chang L; Stanczyk FZ; Ookhtens M; Sherrod A; Stolz A Cancer Res; 2007 Feb; 67(3):1361-9. PubMed ID: 17283174 [TBL] [Abstract][Full Text] [Related]
14. Berberine inhibits androgen synthesis by interaction with aldo-keto reductase 1C3 in 22Rv1 prostate cancer cells. Tian Y; Zhao L; Wang Y; Zhang H; Xu D; Zhao X; Li Y; Li J Asian J Androl; 2016; 18(4):607-12. PubMed ID: 26698234 [TBL] [Abstract][Full Text] [Related]
15. Sensitization of androgen refractory prostate cancer cells to anti-androgens through re-expression of epigenetically repressed androgen receptor - Synergistic action of quercetin and curcumin. Sharma V; Kumar L; Mohanty SK; Maikhuri JP; Rajender S; Gupta G Mol Cell Endocrinol; 2016 Aug; 431():12-23. PubMed ID: 27132804 [TBL] [Abstract][Full Text] [Related]
16. Vitamin D receptor agonist EB1089 is a potent regulator of prostatic "intracrine" metabolism. Doherty D; Dvorkin SA; Rodriguez EP; Thompson PD Prostate; 2014 Feb; 74(3):273-85. PubMed ID: 24242708 [TBL] [Abstract][Full Text] [Related]
17. Transcript profiling of the androgen signal in normal prostate, benign prostatic hyperplasia, and prostate cancer. Bauman DR; Steckelbroeck S; Peehl DM; Penning TM Endocrinology; 2006 Dec; 147(12):5806-16. PubMed ID: 16959841 [TBL] [Abstract][Full Text] [Related]
18. Profiling adrenal 11β-hydroxyandrostenedione metabolites in prostate cancer cells, tissue and plasma: UPC du Toit T; Bloem LM; Quanson JL; Ehlers R; Serafin AM; Swart AC J Steroid Biochem Mol Biol; 2017 Feb; 166():54-67. PubMed ID: 27345701 [TBL] [Abstract][Full Text] [Related]
19. Selective reduction of AKR1C2 in prostate cancer and its role in DHT metabolism. Ji Q; Chang L; VanDenBerg D; Stanczyk FZ; Stolz A Prostate; 2003 Mar; 54(4):275-89. PubMed ID: 12539226 [TBL] [Abstract][Full Text] [Related]
20. Endothelin-1 induces changes in the expression levels of steroidogenic enzymes and increases androgen receptor and testosterone production in the PC3 prostate cancer cell line. Torres MJ; López-Moncada F; Herrera D; Indo S; Lefian A; Llanos P; Tapia J; Castellón EA; Contreras HR Oncol Rep; 2021 Aug; 46(2):. PubMed ID: 34165174 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]