BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1018 related articles for article (PubMed ID: 29369742)

  • 1. Cross-validation and out-of-sample testing of physical activity intensity predictions with a wrist-worn accelerometer.
    Montoye AHK; Westgate BS; Fonley MR; Pfeiffer KA
    J Appl Physiol (1985); 2018 May; 124(5):1284-1293. PubMed ID: 29369742
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Field evaluation of a random forest activity classifier for wrist-worn accelerometer data.
    Pavey TG; Gilson ND; Gomersall SR; Clark B; Trost SG
    J Sci Med Sport; 2017 Jan; 20(1):75-80. PubMed ID: 27372275
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A random forest classifier for the prediction of energy expenditure and type of physical activity from wrist and hip accelerometers.
    Ellis K; Kerr J; Godbole S; Lanckriet G; Wing D; Marshall S
    Physiol Meas; 2014 Nov; 35(11):2191-203. PubMed ID: 25340969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Personalised Accelerometer Cut-point Prediction for Older Adults' Movement Behaviours using a Machine Learning approach.
    Nnamoko N; Cabrera-Diego LA; Campbell D; Sanders G; Fairclough SJ; Korkontzelos I
    Comput Methods Programs Biomed; 2021 Sep; 208():106165. PubMed ID: 34118492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ensemble Methods for Classification of Physical Activities from Wrist Accelerometry.
    Chowdhury AK; Tjondronegoro D; Chandran V; Trost SG
    Med Sci Sports Exerc; 2017 Sep; 49(9):1965-1973. PubMed ID: 28419025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of cut-points for determining activity intensity from a wrist-worn ActiGraph accelerometer in free-living adults.
    Montoye AHK; Clevenger KA; Pfeiffer KA; Nelson MB; Bock JM; Imboden MT; Kaminsky LA
    J Sports Sci; 2020 Nov; 38(22):2569-2578. PubMed ID: 32677510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validation of a wireless accelerometer network for energy expenditure measurement.
    Montoye AH; Dong B; Biswas S; Pfeiffer KA
    J Sports Sci; 2016 Nov; 34(21):2130-9. PubMed ID: 26942316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methods to estimate aspects of physical activity and sedentary behavior from high-frequency wrist accelerometer measurements.
    Staudenmayer J; He S; Hickey A; Sasaki J; Freedson P
    J Appl Physiol (1985); 2015 Aug; 119(4):396-403. PubMed ID: 26112238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intensity Thresholds on Raw Acceleration Data: Euclidean Norm Minus One (ENMO) and Mean Amplitude Deviation (MAD) Approaches.
    Bakrania K; Yates T; Rowlands AV; Esliger DW; Bunnewell S; Sanders J; Davies M; Khunti K; Edwardson CL
    PLoS One; 2016; 11(10):e0164045. PubMed ID: 27706241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wrist-independent energy expenditure prediction models from raw accelerometer data.
    Montoye AH; Pivarnik JM; Mudd LM; Biswas S; Pfeiffer KA
    Physiol Meas; 2016 Oct; 37(10):1770-1784. PubMed ID: 27653642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Age Differences in Estimating Physical Activity by Wrist Accelerometry Using Machine Learning.
    Mardini MT; Bai C; Wanigatunga AA; Saldana S; Casanova R; Manini TM
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34065906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AccNet24: A deep learning framework for classifying 24-hour activity behaviours from wrist-worn accelerometer data under free-living environments.
    Farrahi V; Muhammad U; Rostami M; Oussalah M
    Int J Med Inform; 2023 Apr; 172():105004. PubMed ID: 36724729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine Learning Models for Classifying Physical Activity in Free-Living Preschool Children.
    Ahmadi MN; Pavey TG; Trost SG
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32764316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy Expenditure Prediction Using Raw Accelerometer Data in Simulated Free Living.
    Montoye AH; Mudd LM; Biswas S; Pfeiffer KA
    Med Sci Sports Exerc; 2015 Aug; 47(8):1735-46. PubMed ID: 25494392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ngram time series model to predict activity type and energy cost from wrist, hip and ankle accelerometers: implications of age.
    Strath SJ; Kate RJ; Keenan KG; Welch WA; Swartz AM
    Physiol Meas; 2015 Nov; 36(11):2335-51. PubMed ID: 26449155
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance of thigh-mounted triaxial accelerometer algorithms in objective quantification of sedentary behaviour and physical activity in older adults.
    Wullems JA; Verschueren SMP; Degens H; Morse CI; Onambélé GL
    PLoS One; 2017; 12(11):e0188215. PubMed ID: 29155839
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hip and Wrist Accelerometer Algorithms for Free-Living Behavior Classification.
    Ellis K; Kerr J; Godbole S; Staudenmayer J; Lanckriet G
    Med Sci Sports Exerc; 2016 May; 48(5):933-40. PubMed ID: 26673126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine learning to quantify habitual physical activity in children with cerebral palsy.
    Goodlich BI; Armstrong EL; Horan SA; Baque E; Carty CP; Ahmadi MN; Trost SG
    Dev Med Child Neurol; 2020 Sep; 62(9):1054-1060. PubMed ID: 32420632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Validation and Comparison of Accelerometers Worn on the Hip, Thigh, and Wrists for Measuring Physical Activity and Sedentary Behavior.
    Montoye AHK; Pivarnik JM; Mudd LM; Biswas S; Pfeiffer KA
    AIMS Public Health; 2016; 3(2):298-312. PubMed ID: 29546164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Dual-Accelerometer System for Detecting Human Movement in a Free-living Environment.
    Narayanan A; Stewart T; Mackay L
    Med Sci Sports Exerc; 2020 Jan; 52(1):252-258. PubMed ID: 31361712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 51.