These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 29369794)

  • 1. Epigenetics in teleost fish: From molecular mechanisms to physiological phenotypes.
    Best C; Ikert H; Kostyniuk DJ; Craig PM; Navarro-Martin L; Marandel L; Mennigen JA
    Comp Biochem Physiol B Biochem Mol Biol; 2018 Oct; 224():210-244. PubMed ID: 29369794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Profiling of gene duplication patterns of sequenced teleost genomes: evidence for rapid lineage-specific genome expansion mediated by recent tandem duplications.
    Lu J; Peatman E; Tang H; Lewis J; Liu Z
    BMC Genomics; 2012 Jun; 13():246. PubMed ID: 22702965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micromanaging metabolism-a role for miRNAs in teleost energy metabolism.
    Mennigen JA
    Comp Biochem Physiol B Biochem Mol Biol; 2016 Sep; 199():115-125. PubMed ID: 26384523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expansion by whole genome duplication and evolution of the sox gene family in teleost fish.
    Voldoire E; Brunet F; Naville M; Volff JN; Galiana D
    PLoS One; 2017; 12(7):e0180936. PubMed ID: 28738066
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the Atlantic salmon (Salmo salar) brain-type fatty acid binding protein (fabp7) genes reveals the fates of teleost fabp7 genes following whole genome duplications.
    Lai YY; Lubieniecki KP; Koop BF; Davidson WS
    Gene; 2012 Aug; 504(2):253-61. PubMed ID: 22575613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution of pigment synthesis pathways by gene and genome duplication in fish.
    Braasch I; Schartl M; Volff JN
    BMC Evol Biol; 2007 May; 7():74. PubMed ID: 17498288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution of CC chemokines in teleost fish: a case study in gene duplication and implications for immune diversity.
    Peatman E; Liu Z
    Immunogenetics; 2007 Aug; 59(8):613-23. PubMed ID: 17541578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MicroTrout: A comprehensive, genome-wide miRNA target prediction framework for rainbow trout, Oncorhynchus mykiss.
    Mennigen JA; Zhang D
    Comp Biochem Physiol Part D Genomics Proteomics; 2016 Dec; 20():19-26. PubMed ID: 27494513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative epigenetics in animal physiology: An emerging frontier.
    Navarro-Martín L; Martyniuk CJ; Mennigen JA
    Comp Biochem Physiol Part D Genomics Proteomics; 2020 Dec; 36():100745. PubMed ID: 33126028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epigenomics in marine fishes.
    Metzger DC; Schulte PM
    Mar Genomics; 2016 Dec; 30():43-54. PubMed ID: 26833273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toll-like receptors in bony fish: from genomics to function.
    Palti Y
    Dev Comp Immunol; 2011 Dec; 35(12):1263-72. PubMed ID: 21414346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome evolution and biodiversity in teleost fish.
    Volff JN
    Heredity (Edinb); 2005 Mar; 94(3):280-94. PubMed ID: 15674378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative genomic organization and tissue-specific transcription of the duplicated fabp7 and fabp10 genes in teleost fishes.
    Parmar MB; Wright JM
    Genome; 2013 Nov; 56(11):691-701. PubMed ID: 24299108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Asymmetric evolution in two fish-specifically duplicated receptor tyrosine kinase paralogons involved in teleost coloration.
    Braasch I; Salzburger W; Meyer A
    Mol Biol Evol; 2006 Jun; 23(6):1192-202. PubMed ID: 16547150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Epigenetics of schizophrenia: a review].
    Rivollier F; Lotersztajn L; Chaumette B; Krebs MO; Kebir O
    Encephale; 2014 Oct; 40(5):380-6. PubMed ID: 25127897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phylogenetic timing of the fish-specific genome duplication correlates with the diversification of teleost fish.
    Hoegg S; Brinkmann H; Taylor JS; Meyer A
    J Mol Evol; 2004 Aug; 59(2):190-203. PubMed ID: 15486693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative genomics of ParaHox clusters of teleost fishes: gene cluster breakup and the retention of gene sets following whole genome duplications.
    Siegel N; Hoegg S; Salzburger W; Braasch I; Meyer A
    BMC Genomics; 2007 Sep; 8():312. PubMed ID: 17822543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulatory divergence of homeologous Atlantic salmon elovl5 genes following the salmonid-specific whole-genome duplication.
    Carmona-Antoñanzas G; Zheng X; Tocher DR; Leaver MJ
    Gene; 2016 Oct; 591(1):34-42. PubMed ID: 27374149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Duplicated RNA genes in teleost fish genomes.
    Rose D; Jöris J; Hackermüller J; Reiche K; Li Q; Stadler PF
    J Bioinform Comput Biol; 2008 Dec; 6(6):1157-75. PubMed ID: 19090022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The circadian clock of teleost fish: a comparative analysis reveals distinct fates for duplicated genes.
    Toloza-Villalobos J; Arroyo JI; Opazo JC
    J Mol Evol; 2015 Jan; 80(1):57-64. PubMed ID: 25487517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.