BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 29370099)

  • 1. Fabrications and Performance of Wireless LC Pressure Sensors through LTCC Technology.
    Lin L; Ma M; Zhang F; Liu F; Liu Z; Li Y
    Sensors (Basel); 2018 Jan; 18(2):. PubMed ID: 29370099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An LC Wireless Microfluidic Sensor Based on Low Temperature Co-Fired Ceramic (LTCC) Technology.
    Liang Y; Ma M; Zhang F; Liu F; Liu Z; Wang D; Li Y
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30857181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A harsh environment-oriented wireless passive temperature sensor realized by LTCC technology.
    Tan Q; Luo T; Xiong J; Kang H; Ji X; Zhang Y; Yang M; Wang X; Xue C; Liu J; Zhang W
    Sensors (Basel); 2014 Mar; 14(3):4154-66. PubMed ID: 24594610
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A high-performance LC wireless passive pressure sensor fabricated using low-temperature co-fired ceramic (LTCC) technology.
    Li C; Tan Q; Xue C; Zhang W; Li Y; Xiong J
    Sensors (Basel); 2014 Dec; 14(12):23337-47. PubMed ID: 25490593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wireless Microfluidic Sensor for Metal Ion Detection in Water.
    Liang Y; Ma M; Zhang F; Liu F; Lu T; Liu Z; Li Y
    ACS Omega; 2021 Apr; 6(13):9302-9309. PubMed ID: 33842799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Wireless Passive LC Resonant Sensor Based on LTCC under High-Temperature/Pressure Environments.
    Qin L; Shen D; Wei T; Tan Q; Luo T; Zhou Z; Xiong J
    Sensors (Basel); 2015 Jul; 15(7):16729-39. PubMed ID: 26184207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Wireless LC Sensor Coated with Ba0.9Bi0.066TiO3 for Measuring Temperature.
    Radovanovic M; Mojic-Lante B; Cvejin KN; Srdic VV; Stojanovic GM
    Sensors (Basel); 2015 May; 15(5):11454-64. PubMed ID: 25993519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. All-Ceramic Passive Wireless Temperature Sensor Realized by Tin-Doped Indium Oxide (ITO) Electrodes for Harsh Environment Applications.
    Varadharajan Idhaiam KS; Caswell JA; Pozo PD; Sabolsky K; Sierros KA; Reynolds DS; Sabolsky EM
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Passive Wireless LC Proximity Sensor Based on LTCC Technology.
    Ma M; Wang Y; Liu F; Zhang F; Liu Z; Li Y
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30841546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Ceramic Diffusion Bonding Method for Passive LC High-Temperature Pressure Sensor.
    Li C; Sun B; Xue Y; Xiong J
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30110982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design, Fabrication, and Performance Characterization of LTCC-Based Capacitive Accelerometers.
    Liu H; Fang R; Miao M; Zhang Y; Yan Y; Tang X; Lu H; Jin Y
    Micromachines (Basel); 2018 Mar; 9(3):. PubMed ID: 30424054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and Manufacturing of a Passive Pressure Sensor Based on LC Resonance.
    Zheng C; Li W; Li AL; Zhan Z; Wang LY; Sun DH
    Micromachines (Basel); 2016 May; 7(5):. PubMed ID: 30404262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Slot Antenna Integrated Re-Entrant Resonator Based Wireless Pressure Sensor for High-Temperature Applications.
    Su S; Lu F; Wu G; Wu D; Tan Q; Dong H; Xiong J
    Sensors (Basel); 2017 Aug; 17(9):. PubMed ID: 28841168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Manufacturing, installation, commissioning, and first results with the 3D low-temperature co-fired ceramic high-frequency magnetic sensors on the Tokamak à Configuration Variable.
    Testa D; ;
    Rev Sci Instrum; 2020 Aug; 91(8):081401. PubMed ID: 32872948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D designed battery-free wireless origami pressure sensor.
    Kim T; Kalhori AH; Kim TH; Bao C; Kim WS
    Microsyst Nanoeng; 2022; 8():120. PubMed ID: 36465158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An LC Wireless Passive Pressure Sensor Based on Single-Crystal MgO MEMS Processing Technique for High Temperature Applications.
    Jia P; Liu J; Qian J; Ren Q; An G; Xiong J
    Sensors (Basel); 2021 Oct; 21(19):. PubMed ID: 34640922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Micromachined Capacitive Pressure Sensor Using a Cavity-Less Structure with Bulk-Metal/Elastomer Layers and Its Wireless Telemetry Application.
    Takahata K; Gianchandani YB
    Sensors (Basel); 2008 Apr; 8(4):2317-2330. PubMed ID: 27879824
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Array Integration and Far-Field Detection of Biocompatible Wireless LC Pressure Sensors.
    Wen H; Chen C; Li S; Shi Y; Wang H; Guo W; Liu X
    Small Methods; 2021 Mar; 5(3):e2001055. PubMed ID: 34927837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wireless Passive LC Temperature and Strain Dual-Parameter Sensor.
    Wang Y; Tan Q; Zhang L; Lin B; Li M; Fan Z
    Micromachines (Basel); 2020 Dec; 12(1):. PubMed ID: 33396867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Microwave Pressure Sensor Loaded with Complementary Split Ring Resonator for High-Temperature Applications.
    Yang L; Kou H; Wang X; Zhang X; Shang Z; Shi J; Zhang G; Gui Z
    Micromachines (Basel); 2023 Mar; 14(3):. PubMed ID: 36985042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.