These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 29370099)

  • 1. Fabrications and Performance of Wireless LC Pressure Sensors through LTCC Technology.
    Lin L; Ma M; Zhang F; Liu F; Liu Z; Li Y
    Sensors (Basel); 2018 Jan; 18(2):. PubMed ID: 29370099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An LC Wireless Microfluidic Sensor Based on Low Temperature Co-Fired Ceramic (LTCC) Technology.
    Liang Y; Ma M; Zhang F; Liu F; Liu Z; Wang D; Li Y
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30857181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A harsh environment-oriented wireless passive temperature sensor realized by LTCC technology.
    Tan Q; Luo T; Xiong J; Kang H; Ji X; Zhang Y; Yang M; Wang X; Xue C; Liu J; Zhang W
    Sensors (Basel); 2014 Mar; 14(3):4154-66. PubMed ID: 24594610
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A high-performance LC wireless passive pressure sensor fabricated using low-temperature co-fired ceramic (LTCC) technology.
    Li C; Tan Q; Xue C; Zhang W; Li Y; Xiong J
    Sensors (Basel); 2014 Dec; 14(12):23337-47. PubMed ID: 25490593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wireless Microfluidic Sensor for Metal Ion Detection in Water.
    Liang Y; Ma M; Zhang F; Liu F; Lu T; Liu Z; Li Y
    ACS Omega; 2021 Apr; 6(13):9302-9309. PubMed ID: 33842799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Wireless Passive LC Resonant Sensor Based on LTCC under High-Temperature/Pressure Environments.
    Qin L; Shen D; Wei T; Tan Q; Luo T; Zhou Z; Xiong J
    Sensors (Basel); 2015 Jul; 15(7):16729-39. PubMed ID: 26184207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Wireless LC Sensor Coated with Ba0.9Bi0.066TiO3 for Measuring Temperature.
    Radovanovic M; Mojic-Lante B; Cvejin KN; Srdic VV; Stojanovic GM
    Sensors (Basel); 2015 May; 15(5):11454-64. PubMed ID: 25993519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. All-Ceramic Passive Wireless Temperature Sensor Realized by Tin-Doped Indium Oxide (ITO) Electrodes for Harsh Environment Applications.
    Varadharajan Idhaiam KS; Caswell JA; Pozo PD; Sabolsky K; Sierros KA; Reynolds DS; Sabolsky EM
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Passive Wireless LC Proximity Sensor Based on LTCC Technology.
    Ma M; Wang Y; Liu F; Zhang F; Liu Z; Li Y
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30841546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Ceramic Diffusion Bonding Method for Passive LC High-Temperature Pressure Sensor.
    Li C; Sun B; Xue Y; Xiong J
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30110982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design, Fabrication, and Performance Characterization of LTCC-Based Capacitive Accelerometers.
    Liu H; Fang R; Miao M; Zhang Y; Yan Y; Tang X; Lu H; Jin Y
    Micromachines (Basel); 2018 Mar; 9(3):. PubMed ID: 30424054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and Manufacturing of a Passive Pressure Sensor Based on LC Resonance.
    Zheng C; Li W; Li AL; Zhan Z; Wang LY; Sun DH
    Micromachines (Basel); 2016 May; 7(5):. PubMed ID: 30404262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Slot Antenna Integrated Re-Entrant Resonator Based Wireless Pressure Sensor for High-Temperature Applications.
    Su S; Lu F; Wu G; Wu D; Tan Q; Dong H; Xiong J
    Sensors (Basel); 2017 Aug; 17(9):. PubMed ID: 28841168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Manufacturing, installation, commissioning, and first results with the 3D low-temperature co-fired ceramic high-frequency magnetic sensors on the Tokamak à Configuration Variable.
    Testa D; ;
    Rev Sci Instrum; 2020 Aug; 91(8):081401. PubMed ID: 32872948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D designed battery-free wireless origami pressure sensor.
    Kim T; Kalhori AH; Kim TH; Bao C; Kim WS
    Microsyst Nanoeng; 2022; 8():120. PubMed ID: 36465158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An LC Wireless Passive Pressure Sensor Based on Single-Crystal MgO MEMS Processing Technique for High Temperature Applications.
    Jia P; Liu J; Qian J; Ren Q; An G; Xiong J
    Sensors (Basel); 2021 Oct; 21(19):. PubMed ID: 34640922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Micromachined Capacitive Pressure Sensor Using a Cavity-Less Structure with Bulk-Metal/Elastomer Layers and Its Wireless Telemetry Application.
    Takahata K; Gianchandani YB
    Sensors (Basel); 2008 Apr; 8(4):2317-2330. PubMed ID: 27879824
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Array Integration and Far-Field Detection of Biocompatible Wireless LC Pressure Sensors.
    Wen H; Chen C; Li S; Shi Y; Wang H; Guo W; Liu X
    Small Methods; 2021 Mar; 5(3):e2001055. PubMed ID: 34927837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wireless Passive LC Temperature and Strain Dual-Parameter Sensor.
    Wang Y; Tan Q; Zhang L; Lin B; Li M; Fan Z
    Micromachines (Basel); 2020 Dec; 12(1):. PubMed ID: 33396867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Microwave Pressure Sensor Loaded with Complementary Split Ring Resonator for High-Temperature Applications.
    Yang L; Kou H; Wang X; Zhang X; Shang Z; Shi J; Zhang G; Gui Z
    Micromachines (Basel); 2023 Mar; 14(3):. PubMed ID: 36985042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.