These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 29370130)

  • 1. Revealing Grain Boundary Sliding from Textures of a Deformed Nanocrystalline Pd-Au Alloy.
    Toth LS; Skrotzki W; Zhao Y; Pukenas A; Braun C; Birringer R
    Materials (Basel); 2018 Jan; 11(2):. PubMed ID: 29370130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atomic Simulations of Grain Structures and Deformation Behaviors in Nanocrystalline CoCrFeNiMn High-Entropy Alloy.
    Hou J; Li Q; Wu C; Zheng L
    Materials (Basel); 2019 Mar; 12(7):. PubMed ID: 30934707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of Texture and Grain Size on the Yield Strength of ZK61 Alloy Rods Processed by Cyclic Extrusion and Compression.
    Zhang L; Zhang W; Cao B; Chen W; Duan J; Cui G
    Materials (Basel); 2017 Oct; 10(11):. PubMed ID: 29072616
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Grain boundary sliding in aluminum nano-bi-crystals deformed at room temperature.
    Aitken ZH; Jang D; Weinberger CR; Greer JR
    Small; 2014 Jan; 10(1):100-8. PubMed ID: 23873787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Data compilation on the effect of grain size, temperature, and texture on the strength of a single-phase FCC MnFeNi medium-entropy alloy.
    Schneider M; Werner F; Langenkämper D; Reinhart C; Laplanche G
    Data Brief; 2020 Feb; 28():104807. PubMed ID: 31871972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Grain Boundary Sliding and Amorphization are Responsible for the Reverse Hall-Petch Relation in Superhard Nanocrystalline Boron Carbide.
    Guo D; Song S; Luo R; Goddard WA; Chen M; Reddy KM; An Q
    Phys Rev Lett; 2018 Oct; 121(14):145504. PubMed ID: 30339450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extreme creep resistance in a microstructurally stable nanocrystalline alloy.
    Darling KA; Rajagopalan M; Komarasamy M; Bhatia MA; Hornbuckle BC; Mishra RS; Solanki KN
    Nature; 2016 Sep; 537(7620):378-81. PubMed ID: 27629642
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polycrystal Simulation of Texture-Induced Grain Coarsening during Severe Plastic Deformation.
    Zhang C; Toth LS
    Materials (Basel); 2020 Dec; 13(24):. PubMed ID: 33371398
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical Properties and Deformation Mechanisms of Nanocrystalline U-10Mo Alloys by Molecular Dynamics Simulation.
    Ou X; Shen Y; Yang Y; You Z; Wang P; Yang Y; Tian X
    Materials (Basel); 2023 Jun; 16(13):. PubMed ID: 37444932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular Dynamics as a Means to Investigate Grain Size and Strain Rate Effect on Plastic Deformation of 316 L Nanocrystalline Stainless-Steel.
    Husain A; La P; Hongzheng Y; Jie S
    Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32698390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Grain rotation mediated by grain boundary dislocations in nanocrystalline platinum.
    Wang L; Teng J; Liu P; Hirata A; Ma E; Zhang Z; Chen M; Han X
    Nat Commun; 2014 Jul; 5():4402. PubMed ID: 25030380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hot Deformation Behavior of a Ti-40Al-10V Alloy with Quenching-Tempering Microstructure.
    Cheng L; Chen Y; Yang G; Xie L; Wang J; Lu Y; Kou H
    Materials (Basel); 2018 May; 11(6):. PubMed ID: 29882871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transition from poor ductility to room-temperature superplasticity in a nanostructured aluminum alloy.
    Edalati K; Horita Z; Valiev RZ
    Sci Rep; 2018 Apr; 8(1):6740. PubMed ID: 29712959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dislocation processes in the deformation of nanocrystalline aluminium by molecular-dynamics simulation.
    Yamakov V; Wolf D; Phillpot SR; Mukherjee AK; Gleiter H
    Nat Mater; 2002 Sep; 1(1):45-8. PubMed ID: 12618848
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Grain boundary sliding in pure and segregated bicrystals: a molecular dynamics and first principles study.
    Yuasa M; Nakazawa T; Mabuchi M
    J Phys Condens Matter; 2012 Jul; 24(26):265703. PubMed ID: 22677912
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cooperative grain boundary sliding and migration process in nanocrystalline solids.
    Bobylev SV; Morozov NF; Ovid'ko IA
    Phys Rev Lett; 2010 Jul; 105(5):055504. PubMed ID: 20867932
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of reorganization of a nanocrystalline grain boundary network during biaxial creep deformation of nanocrystalline Ni using molecular dynamics simulation.
    Pal S; Meraj M
    J Mol Model; 2019 Aug; 25(9):282. PubMed ID: 31468178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Heat Treatment Temperature on the Spinning Structure and Properties of a Cu-Sn Alloy.
    Liu J; Zheng W; Yin H
    Microsc Microanal; 2020 Feb; 26(1):29-35. PubMed ID: 31753048
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Size effect on the deformation mechanisms of nanocrystalline platinum thin films.
    Shu X; Kong D; Lu Y; Long H; Sun S; Sha X; Zhou H; Chen Y; Mao S; Liu Y
    Sci Rep; 2017 Oct; 7(1):13264. PubMed ID: 29038576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of the compositions of the DIGM zone in nanocrystalline Ag/Au and Ag/Pd thin films by secondary neutral mass spectrometry.
    Molnár GY; Shenouda SS; Katona GL; Langer GA; Beke DL
    Beilstein J Nanotechnol; 2016; 7():474-83. PubMed ID: 27335738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.