These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 29370206)

  • 21. Systematic high-resolution assessment of global hydropower potential.
    Hoes OA; Meijer LJ; van der Ent RJ; van de Giesen NC
    PLoS One; 2017; 12(2):e0171844. PubMed ID: 28178329
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Real-time reservoir operation using data mining techniques.
    Bozorg-Haddad O; Aboutalebi M; Ashofteh PS; Loáiciga HA
    Environ Monit Assess; 2018 Sep; 190(10):594. PubMed ID: 30232560
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Exploring synergies in the water-food-energy nexus by using an integrated hydro-economic optimization model for the Lancang-Mekong River basin.
    Do P; Tian F; Zhu T; Zohidov B; Ni G; Lu H; Liu H
    Sci Total Environ; 2020 Aug; 728():137996. PubMed ID: 32570321
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dependence of hydropower energy generation on forests in the Amazon Basin at local and regional scales.
    Stickler CM; Coe MT; Costa MH; Nepstad DC; McGrath DG; Dias LC; Rodrigues HO; Soares-Filho BS
    Proc Natl Acad Sci U S A; 2013 Jun; 110(23):9601-6. PubMed ID: 23671098
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Resolving the trade-off between silver eel escapement and hydropower generation with simple decision rules for turbine shutdown.
    Teichert N; Tétard S; Trancart T; Feunteun E; Acou A; de Oliveira E
    J Environ Manage; 2020 May; 261():110212. PubMed ID: 32148282
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Assessment of flow ramping in water bodies impacted by hydropower operation in Norway - Is hydropower with environmental restrictions more sustainable?
    Halleraker JH; Kenawi MS; L'Abée-Lund JH; Bakken TH; Alfredsen K
    Sci Total Environ; 2022 Aug; 832():154776. PubMed ID: 35390377
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Integrating hydrological, landscape ecological, and economic assessment during hydropower exploitation in the upper Yangtze River.
    Wu Y; Huang L; Zhao C; Chen M; Ouyang W
    Sci Total Environ; 2021 May; 767():145496. PubMed ID: 33636780
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Managing dams for energy and fish tradeoffs: What does a win-win solution take?
    Song C; Omalley A; Roy SG; Barber BL; Zydlewski J; Mo W
    Sci Total Environ; 2019 Jun; 669():833-843. PubMed ID: 30897440
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transboundary river basins: Scenarios of hydropower development and operation under extreme climate conditions.
    Ly K; Metternicht G; Marshall L
    Sci Total Environ; 2022 Jan; 803():149828. PubMed ID: 34500272
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Model based hydropower gate operation for mitigation of CSO impacts by means of river base flow increase.
    Achleitner S; De Toffol S; Engelhard C; Rauch W
    Water Sci Technol; 2005; 52(5):87-94. PubMed ID: 16248184
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Considering ecological flow in multi-objective operation of cascade reservoir systems under climate variability with different hydrological periods.
    Lu X; Wang X; Ban X; Singh VP
    J Environ Manage; 2022 May; 309():114690. PubMed ID: 35151141
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cumulative effects of cascade hydropower stations on total dissolved gas supersaturation.
    Ma Q; Li R; Feng J; Lu J; Zhou Q
    Environ Sci Pollut Res Int; 2018 May; 25(14):13536-13547. PubMed ID: 29492821
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Coupled reservoir-river systems: Lessons from an integrated aquatic ecosystem assessment.
    Tranmer AW; Weigel D; Marti CL; Vidergar D; Benjankar R; Tonina D; Goodwin P; Imberger J
    J Environ Manage; 2020 Apr; 260():110107. PubMed ID: 32090820
    [TBL] [Abstract][Full Text] [Related]  

  • 34. How run-of-river operation affects hydropower generation and value.
    Jager HI; Bevelhimer MS
    Environ Manage; 2007 Dec; 40(6):1004-15. PubMed ID: 17891438
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A multi-time-scale power prediction model of hydropower station considering multiple uncertainties.
    Chen J; Zhong PA
    Sci Total Environ; 2019 Aug; 677():612-625. PubMed ID: 31067481
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The development of biodiversity conservation measures in China's hydro projects: A review.
    Bai R; Liu X; Liu X; Liu L; Wang J; Liao S; Zhu A; Li Z
    Environ Int; 2017 Nov; 108():285-298. PubMed ID: 28918369
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Demonstrating a new framework for the comparison of environmental impacts from small- and large-scale hydropower and wind power projects.
    Bakken TH; Aase AG; Hagen D; Sundt H; Barton DN; Lujala P
    J Environ Manage; 2014 Jul; 140():93-101. PubMed ID: 24726970
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multi-purpose reservoir operation oncomitant with estimating hydropower potential using multifarious hydrological models.
    Meskr YM; Mohammed AK; Ayalew AT; Lohani TK
    Heliyon; 2024 Jan; 10(1):e23821. PubMed ID: 38192875
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Future changes in Yuan River ecohydrology: Individual and cumulative impacts of climates change and cascade hydropower development on runoff and aquatic habitat quality.
    Wen X; Liu Z; Lei X; Lin R; Fang G; Tan Q; Wang C; Tian Y; Quan J
    Sci Total Environ; 2018 Aug; 633():1403-1417. PubMed ID: 29758893
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Exploring synergistic benefits of Water-Food-Energy Nexus through multi-objective reservoir optimization schemes.
    Uen TS; Chang FJ; Zhou Y; Tsai WP
    Sci Total Environ; 2018 Aug; 633():341-351. PubMed ID: 29574378
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.