BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 29370226)

  • 1. A critical comparison of topology-based pathway analysis methods.
    Ihnatova I; Popovici V; Budinska E
    PLoS One; 2018; 13(1):e0191154. PubMed ID: 29370226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pathway and Network Analysis of Differentially Expressed Genes in Transcriptomes.
    Huang Q; Sun MA; Yan P
    Methods Mol Biol; 2018; 1751():35-55. PubMed ID: 29508288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A topology-based score for pathway enrichment.
    Ibrahim MA; Jassim S; Cawthorne MA; Langlands K
    J Comput Biol; 2012 May; 19(5):563-73. PubMed ID: 22468678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative study on gene set and pathway topology-based enrichment methods.
    Bayerlová M; Jung K; Kramer F; Klemm F; Bleckmann A; Beißbarth T
    BMC Bioinformatics; 2015 Oct; 16():334. PubMed ID: 26489510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A MATLAB tool for pathway enrichment using a topology-based pathway regulation score.
    Ibrahim M; Jassim S; Cawthorne MA; Langlands K
    BMC Bioinformatics; 2014 Nov; 15(1):358. PubMed ID: 25367050
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crosstalk pathway inference using topological information and biclustering of gene expression data.
    Dussaut JS; Gallo CA; Cecchini RL; Carballido JA; Ponzoni I
    Biosystems; 2016 Dec; 150():1-12. PubMed ID: 27521767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detecting discordance enrichment among a series of two-sample genome-wide expression data sets.
    Lai Y; Zhang F; Nayak TK; Modarres R; Lee NH; McCaffrey TA
    BMC Genomics; 2017 Jan; 18(Suppl 1):1050. PubMed ID: 28198679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. De novo transcriptome assembly of the wild relative of tea tree (Camellia taliensis) and comparative analysis with tea transcriptome identified putative genes associated with tea quality and stress response.
    Zhang HB; Xia EH; Huang H; Jiang JJ; Liu BY; Gao LZ
    BMC Genomics; 2015 Apr; 16(1):298. PubMed ID: 25881092
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FoPA: identifying perturbed signaling pathways in clinical conditions using formal methods.
    Mansoori F; Rahgozar M; Kavousi K
    BMC Bioinformatics; 2019 Feb; 20(1):92. PubMed ID: 30808299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioinformatics-Based Identification of Methylated-Differentially Expressed Genes and Related Pathways in Gastric Cancer.
    Li H; Liu JW; Liu S; Yuan Y; Sun LP
    Dig Dis Sci; 2017 Nov; 62(11):3029-3039. PubMed ID: 28914394
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel signaling pathway impact analysis.
    Tarca AL; Draghici S; Khatri P; Hassan SS; Mittal P; Kim JS; Kim CJ; Kusanovic JP; Romero R
    Bioinformatics; 2009 Jan; 25(1):75-82. PubMed ID: 18990722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel method to prioritize RNAseq data for post-hoc analysis based on absolute changes in transcript abundance.
    McNutt P; Gut I; Hubbard K; Beske P
    Stat Appl Genet Mol Biol; 2015 Jun; 14(3):227-41. PubMed ID: 25781714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Network-Based Meta-Analyses of Associations of Multiple Gene Expression Profiles with Bone Mineral Density Variations in Women.
    He H; Cao S; Niu T; Zhou Y; Zhang L; Zeng Y; Zhu W; Wang YP; Deng HW
    PLoS One; 2016; 11(1):e0147475. PubMed ID: 26808152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of per sample global scaling and per gene normalization methods for differential expression analysis of RNA-seq data.
    Li X; Brock GN; Rouchka EC; Cooper NGF; Wu D; O'Toole TE; Gill RS; Eteleeb AM; O'Brien L; Rai SN
    PLoS One; 2017; 12(5):e0176185. PubMed ID: 28459823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prioritizing genes for pathway impact using network analysis.
    Chang AN
    Methods Mol Biol; 2009; 563():141-56. PubMed ID: 19597784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene Set/Pathway enrichment analysis.
    Hung JH
    Methods Mol Biol; 2013; 939():201-13. PubMed ID: 23192548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparing Bayesian-Based Reconstruction Strategies in Topology-Based Pathway Enrichment Analysis.
    Wang Y; Li J; Huang D; Hao Y; Li B; Wang K; Chen B; Li T; Liu X
    Biomolecules; 2022 Jun; 12(7):. PubMed ID: 35883462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of seven methods for producing Affymetrix expression scores based on False Discovery Rates in disease profiling data.
    Shedden K; Chen W; Kuick R; Ghosh D; Macdonald J; Cho KR; Giordano TJ; Gruber SB; Fearon ER; Taylor JM; Hanash S
    BMC Bioinformatics; 2005 Feb; 6():26. PubMed ID: 15705192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ranking genes by their co-expression to subsets of pathway members.
    Adler P; Peterson H; Agius P; Reimand J; Vilo J
    Ann N Y Acad Sci; 2009 Mar; 1158():1-13. PubMed ID: 19348627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sample size for detecting differentially expressed genes in microarray experiments.
    Wei C; Li J; Bumgarner RE
    BMC Genomics; 2004 Nov; 5():87. PubMed ID: 15533245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.