BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 29370270)

  • 1. Taxonomically-linked growth phenotypes during arsenic stress among arsenic resistant bacteria isolated from soils overlying the Centralia coal seam fire.
    Dunivin TK; Miller J; Shade A
    PLoS One; 2018; 13(1):e0191893. PubMed ID: 29370270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genes involved in arsenic transformation and resistance associated with different levels of arsenic-contaminated soils.
    Cai L; Liu G; Rensing C; Wang G
    BMC Microbiol; 2009 Jan; 9():4. PubMed ID: 19128515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arsenic-resistant bacteria associated with roots of the wild Cirsium arvense (L.) plant from an arsenic polluted soil, and screening of potential plant growth-promoting characteristics.
    Cavalca L; Zanchi R; Corsini A; Colombo M; Romagnoli C; Canzi E; Andreoni V
    Syst Appl Microbiol; 2010 Apr; 33(3):154-64. PubMed ID: 20303688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arsenic-resistant bacteria isolated from agricultural soils of Bangladesh and characterization of arsenate-reducing strains.
    Bachate SP; Cavalca L; Andreoni V
    J Appl Microbiol; 2009 Jul; 107(1):145-56. PubMed ID: 19291237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diversity of arsenite transporter genes from arsenic-resistant soil bacteria.
    Achour AR; Bauda P; Billard P
    Res Microbiol; 2007 Mar; 158(2):128-37. PubMed ID: 17258434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation and characterization of aerobic, culturable, arsenic-tolerant bacteria from lead-zinc mine tailing in southern China.
    Wu D; Zhang Z; Gao Q; Ma Y
    World J Microbiol Biotechnol; 2018 Nov; 34(12):177. PubMed ID: 30446973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of arsenic resistant bacteria from arsenic rich groundwater of West Bengal, India.
    Sarkar A; Kazy SK; Sar P
    Ecotoxicology; 2013 Mar; 22(2):363-76. PubMed ID: 23238642
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and diversity of arsenic resistant bacteria in an old tin mine area of Thailand.
    Jareonmit P; Sajjaphan K; Sadowsky MJ
    J Microbiol Biotechnol; 2010 Jan; 20(1):169-78. PubMed ID: 20134249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular identification of arsenic-resistant estuarine bacteria and characterization of their ars genotype.
    Sri Lakshmi Sunita M; Prashant S; Bramha Chari PV; Nageswara Rao S; Balaravi P; Kavi Kishor PB
    Ecotoxicology; 2012 Jan; 21(1):202-12. PubMed ID: 21879358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of Arsenic-Resistant Klebsiella pneumoniae RnASA11 from Contaminated Soil and Water Samples and Its Bioremediation Potential.
    Kumar P; Dash B; Suyal DC; Gupta SB; Singh AK; Chowdhury T; Soni R
    Curr Microbiol; 2021 Aug; 78(8):3258-3267. PubMed ID: 34230990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arsenic accumulating and transforming bacteria isolated from contaminated soil for potential use in bioremediation.
    Banerjee S; Datta S; Chattyopadhyay D; Sarkar P
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2011; 46(14):1736-47. PubMed ID: 22175878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic diversity and characterization of arsenic-resistant endophytic bacteria isolated from Pteris vittata, an arsenic hyperaccumulator.
    Gu Y; Wang Y; Sun Y; Zhao K; Xiang Q; Yu X; Zhang X; Chen Q
    BMC Microbiol; 2018 May; 18(1):42. PubMed ID: 29739310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High Arsenic Levels Increase Activity Rather than Diversity or Abundance of Arsenic Metabolism Genes in Paddy Soils.
    Zhang SY; Xiao X; Chen SC; Zhu YG; Sun GX; Konstantinidis KT
    Appl Environ Microbiol; 2021 Sep; 87(20):e0138321. PubMed ID: 34378947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phylogenetic and phenotypic analyses of arsenic-reducing bacteria isolated from an old tin mine area in Thailand.
    Jareonmit P; Mehta M; Sadowsky MJ; Sajjaphan K
    World J Microbiol Biotechnol; 2012 May; 28(5):2287-92. PubMed ID: 22806053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Community structure explains antibiotic resistance gene dynamics over a temperature gradient in soil.
    Dunivin TK; Shade A
    FEMS Microbiol Ecol; 2018 Mar; 94(3):. PubMed ID: 29401285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arsenic redox transformation by Pseudomonas sp. HN-2 isolated from arsenic-contaminated soil in Hunan, China.
    Zhang Z; Yin N; Cai X; Wang Z; Cui Y
    J Environ Sci (China); 2016 Sep; 47():165-173. PubMed ID: 27593283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Indigenous soil bacteria and the hyperaccumulator Pteris vittata mediate phytoremediation of soil contaminated with arsenic species.
    Abou-Shanab RAI; Mathai PP; Santelli C; Sadowsky MJ
    Ecotoxicol Environ Saf; 2020 Jun; 195():110458. PubMed ID: 32193021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hyper Accumulation of Arsenic in Mutants of Ochrobactrum tritici Silenced for Arsenite Efflux Pumps.
    Sousa T; Branco R; Piedade AP; Morais PV
    PLoS One; 2015; 10(7):e0131317. PubMed ID: 26132104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional analysis of a chromosomal arsenic resistance operon in Pseudomonas fluorescens strain MSP3.
    Prithivirajsingh S; Mishra SK; Mahadevan A
    Mol Biol Rep; 2001; 28(2):63-72. PubMed ID: 11931390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of arsenic resistant endophytic bacteria from Pteris vittata roots and characterization for arsenic remediation application.
    Tiwari S; Sarangi BK; Thul ST
    J Environ Manage; 2016 Sep; 180():359-65. PubMed ID: 27257820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.