These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 29370270)

  • 21. Mechanism of arsenic resistance in endophytic bacteria isolated from endemic plant of mine tailings and their arsenophore production.
    Román-Ponce B; Ramos-Garza J; Arroyo-Herrera I; Maldonado-Hernández J; Bahena-Osorio Y; Vásquez-Murrieta MS; Wang ET
    Arch Microbiol; 2018 Aug; 200(6):883-895. PubMed ID: 29476206
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Divergent extremes but convergent recovery of bacterial and archaeal soil communities to an ongoing subterranean coal mine fire.
    Lee SH; Sorensen JW; Grady KL; Tobin TC; Shade A
    ISME J; 2017 Jun; 11(6):1447-1459. PubMed ID: 28282042
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A global survey of arsenic-related genes in soil microbiomes.
    Dunivin TK; Yeh SY; Shade A
    BMC Biol; 2019 May; 17(1):45. PubMed ID: 31146755
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Isolation and characterization of arsenate-reducing bacteria from arsenic-contaminated sites in New Zealand.
    Anderson CR; Cook GM
    Curr Microbiol; 2004 May; 48(5):341-7. PubMed ID: 15060729
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Determination of physiological, taxonomic, and molecular characteristics of a cultivable arsenic-resistant bacterial community.
    Cordi A; Pagnout C; Devin S; Poirel J; Billard P; Dollard MA; Bauda P
    Environ Sci Pollut Res Int; 2015 Sep; 22(18):13753-63. PubMed ID: 25721523
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Exposure of soil microbial communities to chromium and arsenic alters their diversity and structure.
    Sheik CS; Mitchell TW; Rizvi FZ; Rehman Y; Faisal M; Hasnain S; McInerney MJ; Krumholz LR
    PLoS One; 2012; 7(6):e40059. PubMed ID: 22768219
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Natural hot spots for gain of multiple resistances: arsenic and antibiotic resistances in heterotrophic, aerobic bacteria from marine hydrothermal vent fields.
    Farias P; Espírito Santo C; Branco R; Francisco R; Santos S; Hansen L; Sorensen S; Morais PV
    Appl Environ Microbiol; 2015 Apr; 81(7):2534-43. PubMed ID: 25636836
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Screening of plant growth promoting attributes and arsenic remediation efficacy of bacteria isolated from agricultural soils of Chhattisgarh.
    Pandey N; Manjunath K; Sahu K
    Arch Microbiol; 2020 Apr; 202(3):567-578. PubMed ID: 31741012
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A molecular study on bacterial resistance to arsenic-toxicity in surface and underground waters of Latium (Italy).
    Davolos D; Pietrangeli B
    Ecotoxicol Environ Saf; 2013 Oct; 96():1-9. PubMed ID: 23870163
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Arsenic-tolerant plant-growth-promoting bacteria isolated from arsenic-polluted soils in South Korea.
    Shagol CC; Krishnamoorthy R; Kim K; Sundaram S; Sa T
    Environ Sci Pollut Res Int; 2014; 21(15):9356-65. PubMed ID: 24737020
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The contribution of ArsB to arsenic resistance in Campylobacter jejuni.
    Shen Z; Han J; Wang Y; Sahin O; Zhang Q
    PLoS One; 2013; 8(3):e58894. PubMed ID: 23554953
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of arsenic resistant plant-growth promoting indigenous soil bacteria isolated from Center-East regions of India.
    Pandey N; Keshavkant S
    J Basic Microbiol; 2019 Aug; 59(8):807-819. PubMed ID: 31070248
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Diversity and abundance of arsenic biotransformation genes in paddy soils from southern China.
    Zhang SY; Zhao FJ; Sun GX; Su JQ; Yang XR; Li H; Zhu YG
    Environ Sci Technol; 2015 Apr; 49(7):4138-46. PubMed ID: 25738639
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Diversity and arsenic-tolerance potential of bacterial communities from soil and sediments along a gold tailing contamination gradient.
    Guan X; Yan X; Li Y; Jiang B; Luo X; Chi X
    Can J Microbiol; 2017 Sep; 63(9):788-805. PubMed ID: 28700833
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Arsenic resistance and prevalence of arsenic resistance genes in Campylobacter jejuni and Campylobacter coli isolated from retail meats.
    Noormohamed A; Fakhr MK
    Int J Environ Res Public Health; 2013 Aug; 10(8):3453-64. PubMed ID: 23965921
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Diversity of arsenate reductase genes (arsC Genes) from arsenic-resistant environmental isolates of E. coli.
    Kaur S; Kamli MR; Ali A
    Curr Microbiol; 2009 Sep; 59(3):288-94. PubMed ID: 19484295
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analysis of the ars gene cluster from highly arsenic-resistant Burkholderia xenovorans LB400.
    Serrato-Gamiño N; Salgado-Lora MG; Chávez-Moctezuma MP; Campos-García J; Cervantes C
    World J Microbiol Biotechnol; 2018 Sep; 34(10):142. PubMed ID: 30203106
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bacillus sp. SXB and Pantoea sp. IMH, aerobic As(V)-reducing bacteria isolated from arsenic-contaminated soil.
    Wu Q; Du J; Zhuang G; Jing C
    J Appl Microbiol; 2013 Mar; 114(3):713-21. PubMed ID: 23210693
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Remediation of arsenic in soil by Aspergillus nidulans isolated from an arsenic-contaminated site.
    Maheswari S; Murugesan AG
    Environ Technol; 2009 Aug; 30(9):921-6. PubMed ID: 19803330
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microbiomes in agricultural and mining soils contaminated with arsenic in Guanajuato, Mexico.
    López-Pérez ME; Saldaña-Robles A; Zanor GA; Ibarra JE; Del Rincón-Castro MC
    Arch Microbiol; 2021 Mar; 203(2):499-511. PubMed ID: 32964256
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.