These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 29370752)

  • 1. The pivotal role of aristaless in development and evolution of diverse antennal morphologies in moths and butterflies.
    Ando T; Fujiwara H; Kojima T
    BMC Evol Biol; 2018 Jan; 18(1):8. PubMed ID: 29370752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dramatic changes in patterning gene expression during metamorphosis are associated with the formation of a feather-like antenna by the silk moth, Bombyx mori.
    Ando T; Kojima T; Fujiwara H
    Dev Biol; 2011 Sep; 357(1):53-63. PubMed ID: 21664349
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wingless and aristaless2 define a developmental ground plan for moth and butterfly wing pattern evolution.
    Martin A; Reed RD
    Mol Biol Evol; 2010 Dec; 27(12):2864-78. PubMed ID: 20624848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Lepidoptera Odorant Binding Protein gene family: Gene gain and loss within the GOBP/PBP complex of moths and butterflies.
    Vogt RG; Große-Wilde E; Zhou JJ
    Insect Biochem Mol Biol; 2015 Jul; 62():142-53. PubMed ID: 25784631
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antennal transcriptome analysis and comparison of olfactory genes in two sympatric defoliators, Dendrolimus houi and Dendrolimus kikuchii (Lepidoptera: Lasiocampidae).
    Zhang S; Zhang Z; Wang H; Kong X
    Insect Biochem Mol Biol; 2014 Sep; 52():69-81. PubMed ID: 24998398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional stability of the aristaless gene in appendage tip formation during evolution.
    Beermann A; Schröder R
    Dev Genes Evol; 2004 Jun; 214(6):303-8. PubMed ID: 15148606
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antennal lobe organization and pheromone usage in bombycid moths.
    Namiki S; Daimon T; Iwatsuki C; Shimada T; Kanzaki R
    Biol Lett; 2014; 10(4):20140096. PubMed ID: 24759369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic patterning in the adult capitate antenna of the beetle Tribolium castaneum.
    Angelini DR; Kikuchi M; Jockusch EL
    Dev Biol; 2009 Mar; 327(1):240-51. PubMed ID: 19059230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of the Distal-less gene in the development and evolution of insect limbs.
    Panganiban G; Nagy L; Carroll SB
    Curr Biol; 1994 Aug; 4(8):671-5. PubMed ID: 7953552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A functional genetic analysis in flour beetles (Tenebrionidae) reveals an antennal identity specification mechanism active during metamorphosis in Holometabola.
    Smith FW; Angelini DR; Jockusch EL
    Mech Dev; 2014 May; 132():13-27. PubMed ID: 24534744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Female sex pheromone and male behavioral responses of the bombycid moth Trilocha varians: comparison with those of the domesticated silkmoth Bombyx mori.
    Daimon T; Fujii T; Yago M; Hsu YF; Nakajima Y; Fujii T; Katsuma S; Ishikawa Y; Shimada T
    Naturwissenschaften; 2012 Mar; 99(3):207-15. PubMed ID: 22307535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The neural mechanisms of antennal positioning in flying moths.
    Krishnan A; Prabhakar S; Sudarsan S; Sane SP
    J Exp Biol; 2012 Sep; 215(Pt 17):3096-105. PubMed ID: 22660776
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phylogenomics reveals the evolutionary timing and pattern of butterflies and moths.
    Kawahara AY; Plotkin D; Espeland M; Meusemann K; Toussaint EFA; Donath A; Gimnich F; Frandsen PB; Zwick A; Dos Reis M; Barber JR; Peters RS; Liu S; Zhou X; Mayer C; Podsiadlowski L; Storer C; Yack JE; Misof B; Breinholt JW
    Proc Natl Acad Sci U S A; 2019 Nov; 116(45):22657-22663. PubMed ID: 31636187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antennal-lobe tracts in the noctuid moth, Heliothis virescens: new anatomical findings.
    Ian E; Berg A; Lillevoll SC; Berg BG
    Cell Tissue Res; 2016 Oct; 366(1):23-35. PubMed ID: 27352608
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antennal-specific pheromone-degrading aldehyde oxidases from the moths Antheraea polyphemus and Bombyx mori.
    Rybczynski R; Vogt RG; Lerner MR
    J Biol Chem; 1990 Nov; 265(32):19712-5. PubMed ID: 2246254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brain composition in Godyris zavaleta, a diurnal butterfly, Reflects an increased reliance on olfactory information.
    Montgomery SH; Ott SR
    J Comp Neurol; 2015 Apr; 523(6):869-91. PubMed ID: 25400217
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative insights into questions of lepidopteran wing pattern homology.
    Monteiro A; Glaser G; Stockslager S; Glansdorp N; Ramos D
    BMC Dev Biol; 2006 Nov; 6():52. PubMed ID: 17090321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Female-biased expression of odourant receptor genes in the adult antennae of the silkworm, Bombyx mori.
    Wanner KW; Anderson AR; Trowell SC; Theilmann DA; Robertson HM; Newcomb RD
    Insect Mol Biol; 2007 Feb; 16(1):107-19. PubMed ID: 17257213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The mechanosensory-motor apparatus of antennae in the Oleander hawk moth (Daphnis nerii, Lepidoptera).
    Sant HH; Sane SP
    J Comp Neurol; 2018 Oct; 526(14):2215-2230. PubMed ID: 29907958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Butterfly eyespots evolved via cooption of an ancestral gene-regulatory network that also patterns antennae, legs, and wings.
    Murugesan SN; Connahs H; Matsuoka Y; Das Gupta M; Tiong GJL; Huq M; Gowri V; Monroe S; Deem KD; Werner T; Tomoyasu Y; Monteiro A
    Proc Natl Acad Sci U S A; 2022 Feb; 119(8):. PubMed ID: 35169073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.