BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 29370799)

  • 1. Regulation of Locomotor activity in fed, fasted, and food-restricted mice lacking tissue-type plasminogen activator.
    Krizo JA; Moreland LE; Rastogi A; Mou X; Prosser RA; Mintz EM
    BMC Physiol; 2018 Jan; 18(1):2. PubMed ID: 29370799
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Urokinase-type plasminogen activator modulates mammalian circadian clock phase regulation in tissue-type plasminogen activator knockout mice.
    Cooper JM; Rastogi A; Krizo JA; Mintz EM; Prosser RA
    Eur J Neurosci; 2017 Mar; 45(6):805-815. PubMed ID: 27992087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tissue-type plasminogen activator-plasmin-BDNF modulate glutamate-induced phase-shifts of the mouse suprachiasmatic circadian clock in vitro.
    Mou X; Peterson CB; Prosser RA
    Eur J Neurosci; 2009 Oct; 30(8):1451-60. PubMed ID: 19811533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural activity in the suprachiasmatic circadian clock of nocturnal mice anticipating a daytime meal.
    Dattolo T; Coomans CP; van Diepen HC; Patton DF; Power S; Antle MC; Meijer JH; Mistlberger RE
    Neuroscience; 2016 Feb; 315():91-103. PubMed ID: 26701294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase shifts in circadian peripheral clocks caused by exercise are dependent on the feeding schedule in PER2::LUC mice.
    Sasaki H; Hattori Y; Ikeda Y; Kamagata M; Iwami S; Yasuda S; Shibata S
    Chronobiol Int; 2016; 33(7):849-62. PubMed ID: 27123825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Odor is a time cue for circadian behavior.
    Abraham U; Saleh M; Kramer A
    J Biol Rhythms; 2013 Feb; 28(1):26-37. PubMed ID: 23382589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Attenuated circadian rhythms in mice lacking the prokineticin 2 gene.
    Li JD; Hu WP; Boehmer L; Cheng MY; Lee AG; Jilek A; Siegel JM; Zhou QY
    J Neurosci; 2006 Nov; 26(45):11615-23. PubMed ID: 17093083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developmental disruption of the serotonin system alters circadian rhythms.
    Paulus EV; Mintz EM
    Physiol Behav; 2012 Jan; 105(2):257-63. PubMed ID: 21907225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advanced light-entrained activity onsets and restored free-running suprachiasmatic nucleus circadian rhythms in per2/dec mutant mice.
    Bode B; Taneja R; Rossner MJ; Oster H
    Chronobiol Int; 2011 Nov; 28(9):737-50. PubMed ID: 22080784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Circadian rhythms in behavior and clock gene expressions in the brain of mice lacking histidine decarboxylase.
    Abe H; Honma S; Ohtsu H; Honma K
    Brain Res Mol Brain Res; 2004 May; 124(2):178-87. PubMed ID: 15135226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. IA Channels Encoded by Kv1.4 and Kv4.2 Regulate Circadian Period of PER2 Expression in the Suprachiasmatic Nucleus.
    Granados-Fuentes D; Hermanstyne TO; Carrasquillo Y; Nerbonne JM; Herzog ED
    J Biol Rhythms; 2015 Oct; 30(5):396-407. PubMed ID: 26152125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Circadian rhythms of PERIOD1 expression in the dorsomedial hypothalamic nucleus in the absence of entrained food-anticipatory activity rhythms in rats.
    Verwey M; Lam GY; Amir S
    Eur J Neurosci; 2009 Jun; 29(11):2217-22. PubMed ID: 19490091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissociation between diurnal cycles in locomotor activity, feeding behavior and hepatic PERIOD2 expression in chronic alcohol-fed mice.
    Zhou P; Werner JH; Lee D; Sheppard AD; Liangpunsakul S; Duffield GE
    Alcohol; 2015 Jun; 49(4):399-408. PubMed ID: 25960184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Restricted wheel access following a light cycle inversion slows re-entrainment without internal desynchrony as measured in Per2Luc mice.
    Castillo C; Molyneux P; Carlson R; Harrington ME
    Neuroscience; 2011 May; 182():169-76. PubMed ID: 21392557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scheduled exposures to a novel environment with a running-wheel differentially accelerate re-entrainment of mice peripheral clocks to new light-dark cycles.
    Yamanaka Y; Honma S; Honma K
    Genes Cells; 2008 May; 13(5):497-507. PubMed ID: 18429821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid damping of food-entrained circadian rhythm of clock gene expression in clock-defective peripheral tissues under fasting conditions.
    Horikawa K; Minami Y; Iijima M; Akiyama M; Shibata S
    Neuroscience; 2005; 134(1):335-43. PubMed ID: 15961241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Period-independent novel circadian oscillators revealed by timed exercise and palatable meals.
    FlĂ´res DE; Bettilyon CN; Yamazaki S
    Sci Rep; 2016 Feb; 6():21945. PubMed ID: 26904978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cryptochrome-dependent circadian periods in the arcuate nucleus.
    Uchida H; Nakamura TJ; Takasu NN; Todo T; Sakai T; Nakamura W
    Neurosci Lett; 2016 Jan; 610():123-8. PubMed ID: 26542738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-imposed daily restricted feeding induces rhythmic expression of Fgf21 in white adipose tissue of mice.
    Oishi K; Konishi M; Murata Y; Itoh N
    Biochem Biophys Res Commun; 2011 Aug; 412(2):396-400. PubMed ID: 21835167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Entrainment of circadian clocks in mammals by arousal and food.
    Mistlberger RE; Antle MC
    Essays Biochem; 2011 Jun; 49(1):119-36. PubMed ID: 21819388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.