These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
252 related articles for article (PubMed ID: 29371593)
1. Highly-efficient quantum memory for polarization qubits in a spatially-multiplexed cold atomic ensemble. Vernaz-Gris P; Huang K; Cao M; Sheremet AS; Laurat J Nat Commun; 2018 Jan; 9(1):363. PubMed ID: 29371593 [TBL] [Abstract][Full Text] [Related]
2. Telecom-Wavelength Atomic Quantum Memory in Optical Fiber for Heralded Polarization Qubits. Jin J; Saglamyurek E; Puigibert Ml; Verma V; Marsili F; Nam SW; Oblak D; Tittel W Phys Rev Lett; 2015 Oct; 115(14):140501. PubMed ID: 26551798 [TBL] [Abstract][Full Text] [Related]
3. Quantum storage of a photonic polarization qubit in a solid. Gündoğan M; Ledingham PM; Almasi A; Cristiani M; de Riedmatten H Phys Rev Lett; 2012 May; 108(19):190504. PubMed ID: 23003015 [TBL] [Abstract][Full Text] [Related]
4. Controllably releasing long-lived quantum memory for photonic polarization qubit into multiple spatially-separate photonic channels. Chen L; Xu Z; Zeng W; Wen Y; Li S; Wang H Sci Rep; 2016 Sep; 6():33959. PubMed ID: 27667262 [TBL] [Abstract][Full Text] [Related]
5. Room-temperature single-photon level memory for polarization states. Kupchak C; Mittiga T; Jordaan B; Namazi M; Nölleke C; Figueroa E Sci Rep; 2015 Jan; 5():7658. PubMed ID: 25564048 [TBL] [Abstract][Full Text] [Related]
8. Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control. Sinclair N; Saglamyurek E; Mallahzadeh H; Slater JA; George M; Ricken R; Hedges MP; Oblak D; Simon C; Sohler W; Tittel W Phys Rev Lett; 2014 Aug; 113(5):053603. PubMed ID: 25126920 [TBL] [Abstract][Full Text] [Related]
9. On-Demand Quantum Storage of Photonic Qubits in an On-Chip Waveguide. Liu C; Zhu TX; Su MX; Ma YZ; Zhou ZQ; Li CF; Guo GC Phys Rev Lett; 2020 Dec; 125(26):260504. PubMed ID: 33449731 [TBL] [Abstract][Full Text] [Related]
10. Cavity-enhanced and temporally multiplexed atom-photon entanglement interface. Liu H; Wang M; Jiao H; Lu J; Fan W; Li S; Wang H Opt Express; 2023 Feb; 31(5):7200-7211. PubMed ID: 36859856 [TBL] [Abstract][Full Text] [Related]
11. Mapping multiple photonic qubits into and out of one solid-state atomic ensemble. Usmani I; Afzelius M; de Riedmatten H; Gisin N Nat Commun; 2010 Apr; 1():12. PubMed ID: 20975673 [TBL] [Abstract][Full Text] [Related]
12. Protecting a quantum memory for a photonic polarization qubit in a cold atomic ensemble by dynamical decoupling. Wu Y; Chen L; Xu Z; Wang H Opt Express; 2014 Sep; 22(19):23360-71. PubMed ID: 25321805 [TBL] [Abstract][Full Text] [Related]
17. On-Demand Storage of Photonic Qubits at Telecom Wavelengths. Liu DC; Li PY; Zhu TX; Zheng L; Huang JY; Zhou ZQ; Li CF; Guo GC Phys Rev Lett; 2022 Nov; 129(21):210501. PubMed ID: 36461974 [TBL] [Abstract][Full Text] [Related]
18. Realization of reliable solid-state quantum memory for photonic polarization qubit. Zhou ZQ; Lin WB; Yang M; Li CF; Guo GC Phys Rev Lett; 2012 May; 108(19):190505. PubMed ID: 23003016 [TBL] [Abstract][Full Text] [Related]
19. Photonic quantum state transfer between a cold atomic gas and a crystal. Maring N; Farrera P; Kutluer K; Mazzera M; Heinze G; de Riedmatten H Nature; 2017 Nov; 551(7681):485-488. PubMed ID: 29168806 [TBL] [Abstract][Full Text] [Related]
20. Atomic vapor quantum memory for a photonic polarization qubit. Cho YW; Kim YH Opt Express; 2010 Dec; 18(25):25786-93. PubMed ID: 21164923 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]