These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 29371608)

  • 1. Abnormal grain growth mediated by fractal boundary migration at the nanoscale.
    Braun C; Dake JM; Krill CE; Birringer R
    Sci Rep; 2018 Jan; 8(1):1592. PubMed ID: 29371608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional geometrical and topological characteristics of grains in conventional and grain boundary engineered 316L stainless steel.
    Liu T; Xia S; Zhou B; Bai Q; Rohrer GS
    Micron; 2018 Jun; 109():58-70. PubMed ID: 29665457
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new approach to grain boundary engineering for nanocrystalline materials.
    Kobayashi S; Tsurekawa S; Watanabe T
    Beilstein J Nanotechnol; 2016; 7():1829-1849. PubMed ID: 28144533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Statistical physics of grain-boundary engineering.
    McGarrity ES; Duxbury PM; Holm EA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 2):026102. PubMed ID: 15783373
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interface stress in polycrystalline materials: the case of nanocrystalline Pd.
    Birringer R; Hoffmann M; Zimmer P
    Phys Rev Lett; 2002 May; 88(20):206104. PubMed ID: 12005582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Imaging the Hydrogen Absorption Dynamics of Individual Grains in Polycrystalline Palladium Thin Films in 3D.
    Yau A; Harder RJ; Kanan MW; Ulvestad A
    ACS Nano; 2017 Nov; 11(11):10945-10954. PubMed ID: 29035558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Grain boundary velocity and curvature are not correlated in Ni polycrystals.
    Bhattacharya A; Shen YF; Hefferan CM; Li SF; Lind J; Suter RM; Krill CE; Rohrer GS
    Science; 2021 Oct; 374(6564):189-193. PubMed ID: 34618565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase Field Modelling of Abnormal Grain Growth.
    Liu Y; Militzer M; Perez M
    Materials (Basel); 2019 Dec; 12(24):. PubMed ID: 31817337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Phase-Field Study of Microstructure Evolution in Tungsten Polycrystalline under He/D Irradiation.
    Han YS
    Materials (Basel); 2021 Dec; 14(23):. PubMed ID: 34885589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Revealing Grain Boundary Sliding from Textures of a Deformed Nanocrystalline Pd-Au Alloy.
    Toth LS; Skrotzki W; Zhao Y; Pukenas A; Braun C; Birringer R
    Materials (Basel); 2018 Jan; 11(2):. PubMed ID: 29370130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The von Neumann relation generalized to coarsening of three-dimensional microstructures.
    MacPherson RD; Srolovitz DJ
    Nature; 2007 Apr; 446(7139):1053-5. PubMed ID: 17460667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Grains, growth, and grooving.
    Rost MJ; Quist DA; Frenken JW
    Phys Rev Lett; 2003 Jul; 91(2):026101. PubMed ID: 12906493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Irradiation-induced grain growth and defect evolution in nanocrystalline zirconia with doped grain boundaries.
    Dey S; Mardinly J; Wang Y; Valdez JA; Holesinger TG; Uberuaga BP; Ditto JJ; Drazin JW; Castro RH
    Phys Chem Chem Phys; 2016 Jun; 18(25):16921-9. PubMed ID: 27282392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Local resistance switching at grain and grain boundary surfaces of polycrystalline tungsten oxide films.
    Shang DS; Shi L; Sun JR; Shen BG
    Nanotechnology; 2011 Jun; 22(25):254008. PubMed ID: 21572213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced Thermal Stability of Carbonyl Iron Nanocrystalline Microwave Absorbents by Pinning Grain Boundaries with SiBaFe Alloy Nanoparticles.
    Xu Y; Chen Z; Fu Z; Hu Y; Luo Y; Li W; Guan J
    Nanomaterials (Basel); 2024 May; 14(10):. PubMed ID: 38786825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of the compositions of the DIGM zone in nanocrystalline Ag/Au and Ag/Pd thin films by secondary neutral mass spectrometry.
    Molnár GY; Shenouda SS; Katona GL; Langer GA; Beke DL
    Beilstein J Nanotechnol; 2016; 7():474-83. PubMed ID: 27335738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Linking stress-driven microstructural evolution in nanocrystalline aluminium with grain boundary doping of oxygen.
    He MR; Samudrala SK; Kim G; Felfer PJ; Breen AJ; Cairney JM; Gianola DS
    Nat Commun; 2016 Apr; 7():11225. PubMed ID: 27071458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of Grain Boundaries under Long-Time Radiation.
    Zhu Y; Luo J; Guo X; Xiang Y; Chapman SJ
    Phys Rev Lett; 2018 Jun; 120(22):222501. PubMed ID: 29906160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Finite element modeling of grain size effects on the ultrasonic microstructural noise backscattering in polycrystalline materials.
    Bai X; Tie B; Schmitt JH; Aubry D
    Ultrasonics; 2018 Jul; 87():182-202. PubMed ID: 29547790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unraveling Thermodynamic and Kinetic Contributions to the Stability of Doped Nanocrystalline Alloys using Nanometallic Multilayers.
    Cunningham WS; Mascarenhas STJ; Riano JS; Wang W; Hwang S; Hattar K; Hodge AM; Trelewicz JR
    Adv Mater; 2022 Jul; 34(27):e2200354. PubMed ID: 35512110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.