These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 29371646)

  • 1. Alternating Droplet Formation by using Tapered Channel Geometry.
    Saqib M; Şahinoğlu OB; Erdem EY
    Sci Rep; 2018 Jan; 8(1):1606. PubMed ID: 29371646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CO
    Nasser GA; Fath El-Bab AMR; Abdel-Mawgood AL; Mohamed H; Saleh AM
    Micromachines (Basel); 2019 Oct; 10(10):. PubMed ID: 31600884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Intersection Angle of Input Channels in Droplet Generators.
    Kim GB; Park YR; Kim SJ; Park KH
    Molecules; 2022 Mar; 27(6):. PubMed ID: 35335156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A poly(dimethylsiloxane) microfluidic sheet reversibly adhered on a glass plate for creation of emulsion droplets for droplet digital PCR.
    Nakashoji Y; Tanaka H; Tsukagoshi K; Hashimoto M
    Electrophoresis; 2017 Jan; 38(2):296-304. PubMed ID: 27568642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic generation of aqueous two-phase system (ATPS) droplets by controlled pulsating inlet pressures.
    Moon BU; Jones SG; Hwang DK; Tsai SS
    Lab Chip; 2015 Jun; 15(11):2437-44. PubMed ID: 25906146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of droplets of alternating composition in microfluidic channels and applications to indexing of concentrations in droplet-based assays.
    Zheng B; Tice JD; Ismagilov RF
    Anal Chem; 2004 Sep; 76(17):4977-82. PubMed ID: 15373431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alternating droplet generation and controlled dynamic droplet fusion in microfluidic device for CdS nanoparticle synthesis.
    Hung LH; Choi KM; Tseng WY; Tan YC; Shea KJ; Lee AP
    Lab Chip; 2006 Feb; 6(2):174-8. PubMed ID: 16450024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A numerical study on the dynamics of droplet formation in a microfluidic double T-junction.
    Ngo IL; Dang TD; Byon C; Joo SW
    Biomicrofluidics; 2015 Mar; 9(2):024107. PubMed ID: 25825622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monodisperse droplet formation by spontaneous and interaction based mechanisms in partitioned EDGE microfluidic device.
    Ten Klooster S; Sahin S; Schroën K
    Sci Rep; 2019 May; 9(1):7820. PubMed ID: 31127142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A compact and facile microfluidic droplet creation device using a piezoelectric diaphragm micropump for droplet digital PCR platforms.
    Okura N; Nakashoji Y; Koshirogane T; Kondo M; Tanaka Y; Inoue K; Hashimoto M
    Electrophoresis; 2017 Oct; 38(20):2666-2672. PubMed ID: 28657130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzyme kinetic measurements using a droplet-based microfluidic system with a concentration gradient.
    Bui MP; Li CA; Han KN; Choo J; Lee EK; Seong GH
    Anal Chem; 2011 Mar; 83(5):1603-8. PubMed ID: 21280615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Viscosity Measurements Using Microfluidic Droplet Length.
    Li Y; Ward KR; Burns MA
    Anal Chem; 2017 Apr; 89(7):3996-4006. PubMed ID: 28240541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical simulations of wall contact angle effects on droplet size during step emulsification.
    Wang M; Kong C; Liang Q; Zhao J; Wen M; Xu Z; Ruan X
    RSC Adv; 2018 Sep; 8(58):33042-33047. PubMed ID: 35548132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A lattice Boltzmann study of the effects of viscoelasticity on droplet formation in microfluidic cross-junctions.
    Gupta A; Sbragaglia M
    Eur Phys J E Soft Matter; 2016 Jan; 39(1):2. PubMed ID: 26794502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting.
    Tan YC; Fisher JS; Lee AI; Cristini V; Lee AP
    Lab Chip; 2004 Aug; 4(4):292-8. PubMed ID: 15269794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic generation of aqueous two-phase-system (ATPS) droplets by oil-droplet choppers.
    Zhou C; Zhu P; Tian Y; Tang X; Shi R; Wang L
    Lab Chip; 2017 Sep; 17(19):3310-3317. PubMed ID: 28861566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A microfluidic droplet generator based on a piezoelectric actuator.
    Bransky A; Korin N; Khoury M; Levenberg S
    Lab Chip; 2009 Feb; 9(4):516-20. PubMed ID: 19190786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbridge structures for uniform interval control of flowing droplets in microfluidic networks.
    Lee DH; Lee W; Um E; Park JK
    Biomicrofluidics; 2011 Sep; 5(3):34117-341179. PubMed ID: 22662043
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluoropolymer surface coatings to control droplets in microfluidic devices.
    Riche CT; Zhang C; Gupta M; Malmstadt N
    Lab Chip; 2014 Jun; 14(11):1834-41. PubMed ID: 24722827
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct measurement of the differential pressure during drop formation in a co-flow microfluidic device.
    Xu K; Tostado CP; Xu JH; Lu YC; Luo GS
    Lab Chip; 2014 Apr; 14(7):1357-66. PubMed ID: 24554196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.