These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 29371705)

  • 1. Exonuclease EXD2 in mitochondrial translation.
    Zid BM; Kapahi P
    Nat Cell Biol; 2018 Feb; 20(2):120-122. PubMed ID: 29371705
    [No Abstract]   [Full Text] [Related]  

  • 2. EXD2 governs germ stem cell homeostasis and lifespan by promoting mitoribosome integrity and translation.
    Silva J; Aivio S; Knobel PA; Bailey LJ; Casali A; Vinaixa M; Garcia-Cao I; Coyaud É; Jourdain AA; Pérez-Ferreros P; Rojas AM; Antolin-Fontes A; Samino-Gené S; Raught B; González-Reyes A; Ribas de Pouplana L; Doherty AJ; Yanes O; Stracker TH
    Nat Cell Biol; 2018 Feb; 20(2):162-174. PubMed ID: 29335528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mitochondrial outer-membrane location of the EXD2 exonuclease contradicts its direct role in nuclear DNA repair.
    Hensen F; Moretton A; van Esveld S; Farge G; Spelbrink JN
    Sci Rep; 2018 Mar; 8(1):5368. PubMed ID: 29599527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aim-less translation: loss of Saccharomyces cerevisiae mitochondrial translation initiation factor mIF3/Aim23 leads to unbalanced protein synthesis.
    Kuzmenko A; Derbikova K; Salvatori R; Tankov S; Atkinson GC; Tenson T; Ott M; Kamenski P; Hauryliuk V
    Sci Rep; 2016 Jan; 6():18749. PubMed ID: 26728900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EXD2: A new regulator of mitochondrial translation and potential target for cancer therapy.
    Stracker TH
    Mol Cell Oncol; 2018; 5(3):e1445943. PubMed ID: 30250899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial transcription and translation: overview.
    D'Souza AR; Minczuk M
    Essays Biochem; 2018 Jul; 62(3):309-320. PubMed ID: 30030363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and Function of the Mitochondrial Ribosome.
    Greber BJ; Ban N
    Annu Rev Biochem; 2016 Jun; 85():103-32. PubMed ID: 27023846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Programmed translational bypassing elements in mitochondria: structure, mobility, and evolutionary origin.
    Nosek J; Tomaska L; Burger G; Lang BF
    Trends Genet; 2015 Apr; 31(4):187-94. PubMed ID: 25795412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synchronized mitochondrial and cytosolic translation programs.
    Couvillion MT; Soto IC; Shipkovenska G; Churchman LS
    Nature; 2016 May; 533(7604):499-503. PubMed ID: 27225121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MRPS27 is a pentatricopeptide repeat domain protein required for the translation of mitochondrially encoded proteins.
    Davies SM; Lopez Sanchez MI; Narsai R; Shearwood AM; Razif MF; Small ID; Whelan J; Rackham O; Filipovska A
    FEBS Lett; 2012 Oct; 586(20):3555-61. PubMed ID: 22841715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial RNA processing and translation: link between mitochondrial mutations and hearing loss?
    Fischel-Ghodsian N
    Mol Genet Metab; 1998 Oct; 65(2):97-104. PubMed ID: 9787101
    [No Abstract]   [Full Text] [Related]  

  • 12. A FRIENDLY connection: how mRNAs get recruited to the mitochondrial surface.
    Kirschner GK
    Plant J; 2022 Oct; 112(2):307-308. PubMed ID: 36259503
    [No Abstract]   [Full Text] [Related]  

  • 13. The MTL1 Pentatricopeptide Repeat Protein Is Required for Both Translation and Splicing of the Mitochondrial NADH DEHYDROGENASE SUBUNIT7 mRNA in Arabidopsis.
    Haïli N; Planchard N; Arnal N; Quadrado M; Vrielynck N; Dahan J; des Francs-Small CC; Mireau H
    Plant Physiol; 2016 Jan; 170(1):354-66. PubMed ID: 26537562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of a pathogenic mtDNA microdeletion reveals a translation-dependent deadenylation decay pathway in human mitochondria.
    Temperley RJ; Seneca SH; Tonska K; Bartnik E; Bindoff LA; Lightowlers RN; Chrzanowska-Lightowlers ZM
    Hum Mol Genet; 2003 Sep; 12(18):2341-8. PubMed ID: 12915481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The mitochondrial epitranscriptome: the roles of RNA modifications in mitochondrial translation and human disease.
    Bohnsack MT; Sloan KE
    Cell Mol Life Sci; 2018 Jan; 75(2):241-260. PubMed ID: 28752201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. miR-27 regulates mitochondrial networks by directly targeting the mitochondrial fission factor.
    Tak H; Kim J; Jayabalan AK; Lee H; Kang H; Cho DH; Ohn T; Nam SW; Kim W; Lee EK
    Exp Mol Med; 2014 Nov; 46(11):e123. PubMed ID: 25431021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial Polyadenylation Is a One-Step Process Required for mRNA Integrity and tRNA Maturation.
    Bratic A; Clemente P; Calvo-Garrido J; Maffezzini C; Felser A; Wibom R; Wedell A; Freyer C; Wredenberg A
    PLoS Genet; 2016 May; 12(5):e1006028. PubMed ID: 27176048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasticity of Mitochondrial Translation.
    Dennerlein S; Wang C; Rehling P
    Trends Cell Biol; 2017 Oct; 27(10):712-721. PubMed ID: 28606446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial translation: elongation factor tu is essential in fission yeast and depends on an exchange factor conserved in humans but not in budding yeast.
    Chiron S; Suleau A; Bonnefoy N
    Genetics; 2005 Apr; 169(4):1891-901. PubMed ID: 15695360
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ribosome-associated pentatricopeptide repeat proteins function as translational activators in mitochondria of trypanosomes.
    Aphasizheva I; Maslov DA; Qian Y; Huang L; Wang Q; Costello CE; Aphasizhev R
    Mol Microbiol; 2016 Mar; 99(6):1043-58. PubMed ID: 26713541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.