These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Advances in lytic polysaccharide monooxygenases with the cellulose-degrading auxiliary activity family 9 to facilitate cellulose degradation for biorefinery. Long L; Hu Y; Sun F; Gao W; Hao Z; Yin H Int J Biol Macromol; 2022 Oct; 219():68-83. PubMed ID: 35931294 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of the Enzymatic Arsenal Secreted by Grieco MAB; Haon M; Grisel S; de Oliveira-Carvalho AL; Magalhães AV; Zingali RB; Pereira N; Berrin JG Front Bioeng Biotechnol; 2020; 8():1028. PubMed ID: 32984289 [TBL] [Abstract][Full Text] [Related]
6. Boosting LPMO-driven lignocellulose degradation by polyphenol oxidase-activated lignin building blocks. Frommhagen M; Mutte SK; Westphal AH; Koetsier MJ; Hinz SWA; Visser J; Vincken JP; Weijers D; van Berkel WJH; Gruppen H; Kabel MA Biotechnol Biofuels; 2017; 10():121. PubMed ID: 28491137 [TBL] [Abstract][Full Text] [Related]
7. In-situ lignin drives lytic polysaccharide monooxygenases to enhance enzymatic saccharification. Ni H; Li M; Li F; Wang L; Xie S; Zhang X; Yu H Int J Biol Macromol; 2020 Oct; 161():308-314. PubMed ID: 32526300 [TBL] [Abstract][Full Text] [Related]
8. Comparison of Six Lytic Polysaccharide Monooxygenases from Tõlgo M; Hegnar OA; Østby H; Várnai A; Vilaplana F; Eijsink VGH; Olsson L Appl Environ Microbiol; 2022 Mar; 88(6):e0009622. PubMed ID: 35080911 [TBL] [Abstract][Full Text] [Related]
9. Comparative analysis of two recombinant LPMOs from Aspergillus fumigatus and their effects on sugarcane bagasse saccharification. Velasco J; de Oliveira Arnoldi Pellegrini V; Sepulchro AGV; Kadowaki MAS; Santo MCE; Polikarpov I; Segato F Enzyme Microb Technol; 2021 Mar; 144():109746. PubMed ID: 33541573 [TBL] [Abstract][Full Text] [Related]
10. Role and significance of lytic polysaccharide monooxygenases (LPMOs) in lignocellulose deconstruction. Rani Singhania R; Dixit P; Kumar Patel A; Shekher Giri B; Kuo CH; Chen CW; Di Dong C Bioresour Technol; 2021 Sep; 335():125261. PubMed ID: 34000697 [TBL] [Abstract][Full Text] [Related]
11. Laccases for biorefinery applications: a critical review on challenges and perspectives. Roth S; Spiess AC Bioprocess Biosyst Eng; 2015 Dec; 38(12):2285-313. PubMed ID: 26437966 [TBL] [Abstract][Full Text] [Related]
12. Quantifying Oxidation of Cellulose-Associated Glucuronoxylan by Two Lytic Polysaccharide Monooxygenases from Neurospora crassa. Hegnar OA; Østby H; Petrović DM; Olsson L; Várnai A; Eijsink VGH Appl Environ Microbiol; 2021 Nov; 87(24):e0165221. PubMed ID: 34613755 [TBL] [Abstract][Full Text] [Related]
13. Synergistic Action of a Lytic Polysaccharide Monooxygenase and a Cellobiohydrolase from Ogunyewo OA; Randhawa A; Gupta M; Kaladhar VC; Verma PK; Yazdani SS Appl Environ Microbiol; 2020 Nov; 86(23):. PubMed ID: 32978122 [TBL] [Abstract][Full Text] [Related]
14. Harnessing the potential of LPMO-containing cellulase cocktails poses new demands on processing conditions. Müller G; Várnai A; Johansen KS; Eijsink VG; Horn SJ Biotechnol Biofuels; 2015; 8():187. PubMed ID: 26609322 [TBL] [Abstract][Full Text] [Related]
15. Lytic Polysaccharide Monooxygenase from Aspergillus fumigatus can Improve Enzymatic Cocktail Activity During Sugarcane Bagasse Hydrolysis. de Gouvêa PF; Gerolamo LE; Bernardi AV; Pereira LMS; Uyemura SA; Dinamarco TM Protein Pept Lett; 2019; 26(5):377-385. PubMed ID: 31237199 [TBL] [Abstract][Full Text] [Related]
16. The use of lytic polysaccharide monooxygenases in anaerobic digestion of lignocellulosic materials. Costa THF; Eijsink VGH; Horn SJ Biotechnol Biofuels; 2019; 12():270. PubMed ID: 31788026 [TBL] [Abstract][Full Text] [Related]
17. Insights into lignin degradation and its potential industrial applications. Abdel-Hamid AM; Solbiati JO; Cann IK Adv Appl Microbiol; 2013; 82():1-28. PubMed ID: 23415151 [TBL] [Abstract][Full Text] [Related]
18. Enzymatic cellulose oxidation is linked to lignin by long-range electron transfer. Westereng B; Cannella D; Wittrup Agger J; Jørgensen H; Larsen Andersen M; Eijsink VG; Felby C Sci Rep; 2015 Dec; 5():18561. PubMed ID: 26686263 [TBL] [Abstract][Full Text] [Related]
19. pH-Dependent Relationship between Catalytic Activity and Hydrogen Peroxide Production Shown via Characterization of a Lytic Polysaccharide Monooxygenase from Hegnar OA; Petrovic DM; Bissaro B; Alfredsen G; Várnai A; Eijsink VGH Appl Environ Microbiol; 2019 Mar; 85(5):. PubMed ID: 30578267 [TBL] [Abstract][Full Text] [Related]
20. Action of lytic polysaccharide monooxygenase on plant tissue is governed by cellular type. Chabbert B; Habrant A; Herbaut M; Foulon L; Aguié-Béghin V; Garajova S; Grisel S; Bennati-Granier C; Gimbert-Herpoël I; Jamme F; Réfrégiers M; Sandt C; Berrin JG; Paës G Sci Rep; 2017 Dec; 7(1):17792. PubMed ID: 29259205 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]