These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 29371886)

  • 21. Enhancing enzymatic saccharification yields of cellulose at high solid loadings by combining different LPMO activities.
    Angeltveit CF; Várnai A; Eijsink VGH; Horn SJ
    Biotechnol Biofuels Bioprod; 2024 Mar; 17(1):39. PubMed ID: 38461298
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Lytic Polysaccharide Monooxygenase from a White-Rot Fungus Drives the Degradation of Lignin by a Versatile Peroxidase.
    Li F; Ma F; Zhao H; Zhang S; Wang L; Zhang X; Yu H
    Appl Environ Microbiol; 2019 May; 85(9):. PubMed ID: 30824433
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of an AA9 LPMO from Thielavia australiensis, TausLPMO9B, under industrially relevant lignocellulose saccharification conditions.
    Calderaro F; Keser M; Akeroyd M; Bevers LE; Eijsink VGH; Várnai A; van den Berg MA
    Biotechnol Biofuels; 2020 Nov; 13(1):195. PubMed ID: 33292403
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lytic polysaccharide monooxygenase synergized with lignin-degrading enzymes for efficient lignin degradation.
    Sun S; Li F; Li M; Zhang W; Jiang Z; Zhao H; Pu Y; Ragauskas AJ; Dai SY; Zhang X; Yu H; Yuan JS; Xie S
    iScience; 2023 Oct; 26(10):107870. PubMed ID: 37766973
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Lytic Polysaccharide Monooxygenase with Broad Xyloglucan Specificity from the Brown-Rot Fungus Gloeophyllum trabeum and Its Action on Cellulose-Xyloglucan Complexes.
    Kojima Y; Várnai A; Ishida T; Sunagawa N; Petrovic DM; Igarashi K; Jellison J; Goodell B; Alfredsen G; Westereng B; Eijsink VG; Yoshida M
    Appl Environ Microbiol; 2016 Nov; 82(22):6557-6572. PubMed ID: 27590806
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Production of recombinant lytic polysaccharide monooxygenases and evaluation effect of its addition into Aspergillus fumigatus var. niveus cocktail for sugarcane bagasse saccharification.
    Gonçalves AL; Cunha PM; da Silva Lima A; Dos Santos JC; Segato F
    Biochim Biophys Acta Proteins Proteom; 2023 Jul; 1871(4):140919. PubMed ID: 37164048
    [TBL] [Abstract][Full Text] [Related]  

  • 27. AA16 Oxidoreductases Boost Cellulose-Active AA9 Lytic Polysaccharide Monooxygenases from
    Sun P; Huang Z; Banerjee S; Kadowaki MAS; Veersma RJ; Magri S; Hilgers R; Muderspach SJ; Laurent CVFP; Ludwig R; Cannella D; Lo Leggio L; van Berkel WJH; Kabel MA
    ACS Catal; 2023 Apr; 13(7):4454-4467. PubMed ID: 37066045
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanisms of laccase-mediator treatments improving the enzymatic hydrolysis of pre-treated spruce.
    Moilanen U; Kellock M; Várnai A; Andberg M; Viikari L
    Biotechnol Biofuels; 2014; 7(1):177. PubMed ID: 25648942
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Visible light-exposed lignin facilitates cellulose solubilization by lytic polysaccharide monooxygenases.
    Kommedal EG; Angeltveit CF; Klau LJ; Ayuso-Fernández I; Arstad B; Antonsen SG; Stenstrøm Y; Ekeberg D; Gírio F; Carvalheiro F; Horn SJ; Aachmann FL; Eijsink VGH
    Nat Commun; 2023 Feb; 14(1):1063. PubMed ID: 36828821
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of a thermostable fungal lytic polysaccharide monooxygenase and evaluation of its effect on lignocellulosic degradation.
    Zhang R; Liu Y; Zhang Y; Feng D; Hou S; Guo W; Niu K; Jiang Y; Han L; Sindhu L; Fang X
    Appl Microbiol Biotechnol; 2019 Jul; 103(14):5739-5750. PubMed ID: 31152202
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A family of AA9 lytic polysaccharide monooxygenases in Aspergillus nidulans is differentially regulated by multiple substrates and at least one is active on cellulose and xyloglucan.
    Jagadeeswaran G; Gainey L; Prade R; Mort AJ
    Appl Microbiol Biotechnol; 2016 May; 100(10):4535-47. PubMed ID: 27075737
    [TBL] [Abstract][Full Text] [Related]  

  • 32. LPMO
    Bernardi AV; Gerolamo LE; de Gouvêa PF; Yonamine DK; Pereira LMS; de Oliveira AHC; Uyemura SA; Dinamarco TM
    Int J Mol Sci; 2020 Dec; 22(1):. PubMed ID: 33383972
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In situ measurements of oxidation-reduction potential and hydrogen peroxide concentration as tools for revealing LPMO inactivation during enzymatic saccharification of cellulose.
    Kadić A; Várnai A; Eijsink VGH; Horn SJ; Lidén G
    Biotechnol Biofuels; 2021 Feb; 14(1):46. PubMed ID: 33602308
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The yeast
    Ladevèze S; Haon M; Villares A; Cathala B; Grisel S; Herpoël-Gimbert I; Henrissat B; Berrin JG
    Biotechnol Biofuels; 2017; 10():215. PubMed ID: 28919928
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Oxidative Power: Tools for Assessing LPMO Activity on Cellulose.
    Calderaro F; Bevers LE; van den Berg MA
    Biomolecules; 2021 Jul; 11(8):. PubMed ID: 34439765
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enzymatic depolymerization of industrial lignins by laccase-mediator systems in 1,4-dioxane/water.
    Dillies J; Vivien C; Chevalier M; Rulence A; Châtaigné G; Flahaut C; Senez V; Froidevaux R
    Biotechnol Appl Biochem; 2020 Sep; 67(5):774-782. PubMed ID: 31957059
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome.
    Davidi L; Moraïs S; Artzi L; Knop D; Hadar Y; Arfi Y; Bayer EA
    Proc Natl Acad Sci U S A; 2016 Sep; 113(39):10854-9. PubMed ID: 27621442
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phenols and lignin: Key players in reducing enzymatic hydrolysis yields of steam-pretreated biomass in presence of laccase.
    Oliva-Taravilla A; Tomás-Pejó E; Demuez M; González-Fernández C; Ballesteros M
    J Biotechnol; 2016 Jan; 218():94-101. PubMed ID: 26684987
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The liquid fraction from hydrothermal pretreatment of wheat straw provides lytic polysaccharide monooxygenases with both electrons and H
    Kont R; Pihlajaniemi V; Borisova AS; Aro N; Marjamaa K; Loogen J; Büchs J; Eijsink VGH; Kruus K; Väljamäe P
    Biotechnol Biofuels; 2019; 12():235. PubMed ID: 31624497
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enzymatic degradation of sulfite-pulped softwoods and the role of LPMOs.
    Chylenski P; Petrović DM; Müller G; Dahlström M; Bengtsson O; Lersch M; Siika-Aho M; Horn SJ; Eijsink VGH
    Biotechnol Biofuels; 2017; 10():177. PubMed ID: 28702082
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.