BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

418 related articles for article (PubMed ID: 29371907)

  • 1. Nanostructure design for drastic reduction of thermal conductivity while preserving high electrical conductivity.
    Nakamura Y
    Sci Technol Adv Mater; 2018; 19(1):31-43. PubMed ID: 29371907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phonon transport control by nanoarchitecture including epitaxial Ge nanodots for Si-based thermoelectric materials.
    Yamasaka S; Nakamura Y; Ueda T; Takeuchi S; Sakai A
    Sci Rep; 2015 Oct; 5():14490. PubMed ID: 26434678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Independent control of electrical and heat conduction by nanostructure designing for Si-based thermoelectric materials.
    Yamasaka S; Watanabe K; Sakane S; Takeuchi S; Sakai A; Sawano K; Nakamura Y
    Sci Rep; 2016 Mar; 6():22838. PubMed ID: 26973092
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phonon transport in the nano-system of Si and SiGe films with Ge nanodots and approach to ultralow thermal conductivity.
    Taniguchi T; Terada T; Komatsubara Y; Ishibe T; Konoike K; Sanada A; Naruse N; Mera Y; Nakamura Y
    Nanoscale; 2021 Mar; 13(9):4971-4977. PubMed ID: 33629704
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning phonon transport spectrum for better thermoelectric materials.
    Hori T; Shiomi J
    Sci Technol Adv Mater; 2019; 20(1):10-25. PubMed ID: 31001366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased phonon scattering by nanograins and point defects in nanostructured silicon with a low concentration of germanium.
    Zhu GH; Lee H; Lan YC; Wang XW; Joshi G; Wang DZ; Yang J; Vashaee D; Guilbert H; Pillitteri A; Dresselhaus MS; Chen G; Ren ZF
    Phys Rev Lett; 2009 May; 102(19):196803. PubMed ID: 19518985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermoelectric La-doped SrTiO
    Apreutesei M; Debord R; Bouras M; Regreny P; Botella C; Benamrouche A; Carretero-Genevrier A; Gazquez J; Grenet G; Pailhès S; Saint-Girons G; Bachelet R
    Sci Technol Adv Mater; 2017; 18(1):430-435. PubMed ID: 28740558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron-phonon scattering effect on the lattice thermal conductivity of silicon nanostructures.
    Fu B; Tang G; Li Y
    Phys Chem Chem Phys; 2017 Nov; 19(42):28517-28526. PubMed ID: 28902205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large thermoelectric figure-of-merits from SiGe nanowires by simultaneously measuring electrical and thermal transport properties.
    Lee EK; Yin L; Lee Y; Lee JW; Lee SJ; Lee J; Cha SN; Whang D; Hwang GS; Hippalgaonkar K; Majumdar A; Yu C; Choi BL; Kim JM; Kim K
    Nano Lett; 2012 Jun; 12(6):2918-23. PubMed ID: 22548377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduction of thermal conductivity in phononic nanomesh structures.
    Yu JK; Mitrovic S; Tham D; Varghese J; Heath JR
    Nat Nanotechnol; 2010 Oct; 5(10):718-21. PubMed ID: 20657598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal conductivity engineering of bulk and one-dimensional Si-Ge nanoarchitectures.
    Kandemir A; Ozden A; Cagin T; Sevik C
    Sci Technol Adv Mater; 2017; 18(1):187-196. PubMed ID: 28469733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultra-low Thermal Conductivity in Si/Ge Hierarchical Superlattice Nanowire.
    Mu X; Wang L; Yang X; Zhang P; To AC; Luo T
    Sci Rep; 2015 Nov; 5():16697. PubMed ID: 26568511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Observation of suppressed diffuson and propagon thermal conductivity of hydrogenated amorphous silicon films.
    Zhang Y; Eslamisaray MA; Feng T; Kortshagen U; Wang X
    Nanoscale Adv; 2021 Dec; 4(1):87-94. PubMed ID: 36132943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Si/Ge superlattice nanowires with ultralow thermal conductivity.
    Hu M; Poulikakos D
    Nano Lett; 2012 Nov; 12(11):5487-94. PubMed ID: 23106449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal Conductivity Reduction in a Silicon Thin Film with Nanocones.
    Huang X; Gluchko S; Anufriev R; Volz S; Nomura M
    ACS Appl Mater Interfaces; 2019 Sep; 11(37):34394-34398. PubMed ID: 31490655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal conductivity anisotropy in holey silicon nanostructures and its impact on thermoelectric cooling.
    Ren Z; Lee J
    Nanotechnology; 2018 Jan; 29(4):045404. PubMed ID: 29199973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuning thermal transport in ultrathin silicon membranes by surface nanoscale engineering.
    Neogi S; Reparaz JS; Pereira LF; Graczykowski B; Wagner MR; Sledzinska M; Shchepetov A; Prunnila M; Ahopelto J; Sotomayor-Torres CM; Donadio D
    ACS Nano; 2015 Apr; 9(4):3820-8. PubMed ID: 25827287
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Record Low Thermal Conductivity of Polycrystalline Si Nanowire: Breaking the Casimir Limit by Severe Suppression of Propagons.
    Zhou Y; Hu M
    Nano Lett; 2016 Oct; 16(10):6178-6187. PubMed ID: 27603153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Boosting Thermoelectric Performance in Epitaxial GeTe Film/Si by Domain Engineering and Point Defect Control.
    Ishibe T; Komatsubara Y; Ishikawa K; Takigawa S; Naruse N; Mera Y; Yamashita Y; Ohishi Y; Nakamura Y
    ACS Appl Mater Interfaces; 2023 May; 15(21):26104-26110. PubMed ID: 37191696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phonon Transmission Across the Si-Ge Interface.
    Bi K; Lou J; Chen Y
    J Nanosci Nanotechnol; 2015 Apr; 15(4):3187-90. PubMed ID: 26353560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.