BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

423 related articles for article (PubMed ID: 29371907)

  • 21. High Thermoelectric Power Factor Realization in Si-Rich SiGe/Si Superlattices by Super-Controlled Interfaces.
    Taniguchi T; Ishibe T; Naruse N; Mera Y; Alam MM; Sawano K; Nakamura Y
    ACS Appl Mater Interfaces; 2020 Jun; 12(22):25428-25434. PubMed ID: 32427454
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Vertical Silicon Nanowire Thermoelectric Modules with Enhanced Thermoelectric Properties.
    Lee S; Kim K; Kang DH; Meyyappan M; Baek CK
    Nano Lett; 2019 Feb; 19(2):747-755. PubMed ID: 30636421
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced thermoelectric performance of rough silicon nanowires.
    Hochbaum AI; Chen R; Delgado RD; Liang W; Garnett EC; Najarian M; Majumdar A; Yang P
    Nature; 2008 Jan; 451(7175):163-7. PubMed ID: 18185582
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of interface angle on the thermal conductivity of Si/Ge superlattices.
    Liu YG; Ren GL; Chernatynskiy A; Zhao XF
    Phys Chem Chem Phys; 2021 Oct; 23(40):23225-23232. PubMed ID: 34623359
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nanoscale imaging of phonon dynamics by electron microscopy.
    Gadre CA; Yan X; Song Q; Li J; Gu L; Huyan H; Aoki T; Lee SW; Chen G; Wu R; Pan X
    Nature; 2022 Jun; 606(7913):292-297. PubMed ID: 35676428
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Semiconductor Thermal and Electrical Properties Decoupled by Localized Phonon Resonances.
    Spann BT; Weber JC; Brubaker MD; Harvey TE; Yang L; Honarvar H; Tsai CN; Treglia AC; Lee M; Hussein MI; Bertness KA
    Adv Mater; 2023 Jun; 35(26):e2209779. PubMed ID: 36951229
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gigantic Phonon-Scattering Cross Section To Enhance Thermoelectric Performance in Bulk Crystals.
    Hwang J; Kim H; Han MK; Hong J; Shim JH; Tak JY; Lim YS; Jin Y; Kim J; Park H; Lee DK; Bahk JH; Kim SJ; Kim W
    ACS Nano; 2019 Jul; 13(7):8347-8355. PubMed ID: 31260259
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhanced Reduction of Thermal Conductivity in Amorphous Silicon Nitride-Containing Phononic Crystals Fabricated Using Directed Self-Assembly of Block Copolymers.
    Zhou C; Tambo N; Ashley EM; Liao Y; Shiomi J; Takahashi K; Craig GSW; Nealey PF
    ACS Nano; 2020 Jun; 14(6):6980-6989. PubMed ID: 32459464
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sub-amorphous thermal conductivity in ultrathin crystalline silicon nanotubes.
    Wingert MC; Kwon S; Hu M; Poulikakos D; Xiang J; Chen R
    Nano Lett; 2015 Apr; 15(4):2605-11. PubMed ID: 25758163
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhancing Thermal Transport in Layered Nanomaterials.
    Malhotra A; Kothari K; Maldovan M
    Sci Rep; 2018 Jan; 8(1):1880. PubMed ID: 29382869
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Directional Phonon Suppression Function as a Tool for the Identification of Ultralow Thermal Conductivity Materials.
    Romano G; Kolpak AM
    Sci Rep; 2017 Mar; 7():44379. PubMed ID: 28338003
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thermoelectric Transport in Nanocomposites.
    Liu B; Hu J; Zhou J; Yang R
    Materials (Basel); 2017 Apr; 10(4):. PubMed ID: 28772777
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Anisotropic thermal conductivity of Ge quantum-dot and symmetrically strained Si/Ge superlattices.
    Liu WL; Borca-Tasciuc T; Chen G; Liu JL; Wang KL
    J Nanosci Nanotechnol; 2001 Mar; 1(1):39-42. PubMed ID: 12914029
    [TBL] [Abstract][Full Text] [Related]  

  • 34. TEM-compatible microdevice for the complete thermoelectric characterization of epitaxially integrated Si-based nanowires.
    Sojo-Gordillo JM; Kaur Y; Tachikawa S; Alayo N; Salleras M; Forrer N; Fonseca L; Morata A; Tarancón A; Zardo I
    Nanoscale Horiz; 2024 Jun; 9(7):1200-1210. PubMed ID: 38767571
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Experimental investigation of size effects on the thermal conductivity of silicon-germanium alloy thin films.
    Cheaito R; Duda JC; Beechem TE; Hattar K; Ihlefeld JF; Medlin DL; Rodriguez MA; Campion MJ; Piekos ES; Hopkins PE
    Phys Rev Lett; 2012 Nov; 109(19):195901. PubMed ID: 23215405
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Miniaturized planar Si-nanowire micro-thermoelectric generator using exuded thermal field for power generation.
    Zhan T; Yamato R; Hashimoto S; Tomita M; Oba S; Himeda Y; Mesaki K; Takezawa H; Yokogawa R; Xu Y; Matsukawa T; Ogura A; Kamakura Y; Watanabe T
    Sci Technol Adv Mater; 2018; 19(1):443-453. PubMed ID: 29868148
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhancing the Coherent Phonon Transport in SiGe Nanowires with Dense Si/Ge Interfaces.
    Cheng Y; Xiong S; Zhang T
    Nanomaterials (Basel); 2022 Dec; 12(24):. PubMed ID: 36558226
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys.
    Joshi G; Lee H; Lan Y; Wang X; Zhu G; Wang D; Gould RW; Cuff DC; Tang MY; Dresselhaus MS; Chen G; Ren Z
    Nano Lett; 2008 Dec; 8(12):4670-4. PubMed ID: 19367858
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thermal transport in nanocrystalline Si and SiGe by ab initio based Monte Carlo simulation.
    Yang L; Minnich AJ
    Sci Rep; 2017 Mar; 7():44254. PubMed ID: 28290484
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High Thermoelectric Performance in SnTe Nanocomposites with All-Scale Hierarchical Structures.
    Jiang Q; Hu H; Yang J; Xin J; Li S; Viola G; Yan H
    ACS Appl Mater Interfaces; 2020 May; 12(20):23102-23109. PubMed ID: 32338496
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.