These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 29372362)

  • 41. Investigation of cue-based vertical and horizontal eye movements with electroencephalographic and eye-tracking data.
    Kaiser V; Brunner C; Leeb R; Neuper C; Pfurtscheller G
    Clin Neurophysiol; 2009 Nov; 120(11):1988-1993. PubMed ID: 19786364
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Active visual search in non-stationary scenes: coping with temporal variability and uncertainty.
    Ušćumlić M; Blankertz B
    J Neural Eng; 2016 Feb; 13(1):016015. PubMed ID: 26726921
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Saccade-related neurons in cat superior colliculus: pandirectional movement cells with postsaccadic responses.
    Peck CK
    J Neurophysiol; 1984 Dec; 52(6):1154-68. PubMed ID: 6520629
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Recognition of direction of uniform and accelerated visual motion and EEG alpha wave phases.
    Shevelev IA; Kamenkovich VM; Kostelianetz NB; Sharaev GA
    FEBS Lett; 1996 Aug; 392(2):169-74. PubMed ID: 8772197
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Looking for a face in the crowd: fixation-related potentials in an eye-movement visual search task.
    Kaunitz LN; Kamienkowski JE; Varatharajah A; Sigman M; Quiroga RQ; Ison MJ
    Neuroimage; 2014 Apr; 89():297-305. PubMed ID: 24342226
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Neuronal activity in prepositus nucleus correlated with eye movement in the alert cat.
    Lopez-Barneo J; Darlot C; Berthoz A; Baker R
    J Neurophysiol; 1982 Feb; 47(2):329-52. PubMed ID: 7062103
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Role of frontal eye fields in countermanding saccades: visual, movement, and fixation activity.
    Hanes DP; Patterson WF; Schall JD
    J Neurophysiol; 1998 Feb; 79(2):817-34. PubMed ID: 9463444
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Postsaccadic enhancement of initiation of smooth pursuit eye movements in monkeys.
    Lisberger SG
    J Neurophysiol; 1998 Apr; 79(4):1918-30. PubMed ID: 9535958
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Combined eye-head gaze shifts produced by electrical stimulation of the superior colliculus in rhesus monkeys.
    Freedman EG; Stanford TR; Sparks DL
    J Neurophysiol; 1996 Aug; 76(2):927-52. PubMed ID: 8871209
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Human fast negative EEG potentials before express saccades].
    Moiseeva VV; Slavutskaia MV; Shul'govskiĭ VV
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2007; 57(1):23-32. PubMed ID: 17432315
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Using temporally aligned event-related potentials for the investigation of attention shifts prior to and during saccades.
    Huber-Huber C; Ditye T; Marchante Fernández M; Ansorge U
    Neuropsychologia; 2016 Nov; 92():129-141. PubMed ID: 27059211
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Post-saccadic updating of visual space in the posterior parietal cortex in humans.
    Bellebaum C; Hoffmann KP; Daum I
    Behav Brain Res; 2005 Sep; 163(2):194-203. PubMed ID: 15970337
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Perturbation of combined saccade-vergence movements by microstimulation in monkey superior colliculus.
    Chaturvedi V; van Gisbergen JA
    J Neurophysiol; 1999 May; 81(5):2279-96. PubMed ID: 10322066
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Conjugate and vergence oscillations during saccades and gaze shifts: implications for integrated control of binocular movement.
    Sylvestre PA; Galiana HL; Cullen KE
    J Neurophysiol; 2002 Jan; 87(1):257-72. PubMed ID: 11784748
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of saccades on the activity of neurons in the cat lateral geniculate nucleus.
    Lee D; Malpeli JG
    J Neurophysiol; 1998 Feb; 79(2):922-36. PubMed ID: 9463453
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Discharge characteristics of vestibular and saccade neurons in the rostral midbrain of alert cats.
    Fukushima K; Ohashi T; Fukushima J; Kaneko CR
    J Neurophysiol; 1995 Jun; 73(6):2129-43. PubMed ID: 7666128
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Motor intention activity in the macaque's lateral intraparietal area. I. Dissociation of motor plan from sensory memory.
    Mazzoni P; Bracewell RM; Barash S; Andersen RA
    J Neurophysiol; 1996 Sep; 76(3):1439-56. PubMed ID: 8890265
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The broadband-transient induced gamma-band response in scalp EEG reflects the execution of saccades.
    Yuval-Greenberg S; Deouell LY
    Brain Topogr; 2009 Jun; 22(1):3-6. PubMed ID: 19234781
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Eye-head coordination in moderately affected Huntington's Disease patients: do head movements facilitate gaze shifts?
    Becker W; Jürgens R; Kassubek J; Ecker D; Kramer B; Landwehrmeyer B
    Exp Brain Res; 2009 Jan; 192(1):97-112. PubMed ID: 18807023
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Right visual field advantage in parafoveal processing: evidence from eye-fixation-related potentials.
    Simola J; Holmqvist K; Lindgren M
    Brain Lang; 2009 Nov; 111(2):101-13. PubMed ID: 19782390
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.