BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 29372540)

  • 21. Rapid quantitation of lipid in microalgae by time-domain nuclear magnetic resonance.
    Gao C; Xiong W; Zhang Y; Yuan W; Wu Q
    J Microbiol Methods; 2008 Dec; 75(3):437-40. PubMed ID: 18706459
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nile red fluorescence screening facilitating neutral lipid phenotype determination in budding yeast, Saccharomyces cerevisiae, and the fission yeast Schizosaccharomyces pombe.
    Rostron KA; Rolph CE; Lawrence CL
    Antonie Van Leeuwenhoek; 2015 Jul; 108(1):97-106. PubMed ID: 25948336
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 7-Ketocholesterol favors lipid accumulation and colocalizes with Nile Red positive cytoplasmic structures formed during 7-ketocholesterol-induced apoptosis: analysis by flow cytometry, FRET biphoton spectral imaging microscopy, and subcellular fractionation.
    Vejux A; Kahn E; Dumas D; Bessède G; Ménétrier F; Athias A; Riedinger JM; Frouin F; Stoltz JF; Ogier-Denis E; Todd-Pokropek A; Lizard G
    Cytometry A; 2005 Apr; 64(2):87-100. PubMed ID: 15739183
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modified Nile red staining method for improved visualization of neutral lipid depositions in stratum corneum.
    Sheu HM; Tsai JC; Lin TK; Wong TW; Lee JY
    J Formos Med Assoc; 2003 Sep; 102(9):656-60. PubMed ID: 14625614
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Application of Nile red, a fluorescent hydrophobic probe, for the detection of neutral lipid deposits in tissue sections: comparison with oil red O.
    Fowler SD; Greenspan P
    J Histochem Cytochem; 1985 Aug; 33(8):833-6. PubMed ID: 4020099
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Determining intracellular lipid content of different oleaginous yeasts by one simple and accurate Nile Red fluorescent method.
    Zhao C; Luo MT; Huang C; Chen XF; Xiong L; Li HL; Chen XD
    Prep Biochem Biotechnol; 2019; 49(6):597-605. PubMed ID: 30929602
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Imaging the accumulated intracellular microalgal lipids as a response to temperature stress.
    Elsayed KNM; Kolesnikova TA; Noke A; Klöck G
    3 Biotech; 2017 May; 7(1):41. PubMed ID: 28439814
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optimization of Seoul-Fluor-based lipid droplet bioprobes and their application in microalgae for bio-fuel study.
    Lee Y; Na S; Lee S; Jeon NL; Park SB
    Mol Biosyst; 2013 May; 9(5):952-6. PubMed ID: 23287998
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Use of nile red for the rapid in situ quantitation of lipids on thin-layer chromatograms.
    Fowler SD; Brown WJ; Warfel J; Greenspan P
    J Lipid Res; 1987 Oct; 28(10):1225-32. PubMed ID: 3681147
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Disruption of microalgal cells using high-frequency focused ultrasound.
    Wang M; Yuan W; Jiang X; Jing Y; Wang Z
    Bioresour Technol; 2014 Feb; 153():315-21. PubMed ID: 24374364
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Age-related changes in neutral lipid content of Paramecium primaurelia as revealed by nile red.
    Ramoino P; Margallo E; Nicolò G
    J Lipid Res; 1996 Jun; 37(6):1207-12. PubMed ID: 8808755
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The use of a fluorescent dye, Nile red, to evaluate the lipid content of single mammalian oocytes.
    Genicot G; Leroy JL; Soom AV; Donnay I
    Theriogenology; 2005 Mar; 63(4):1181-94. PubMed ID: 15710202
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fluorescent measurement of microalgal neutral lipids.
    Elsey D; Jameson D; Raleigh B; Cooney MJ
    J Microbiol Methods; 2007 Mar; 68(3):639-42. PubMed ID: 17189655
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microalgal lipids biochemistry and biotechnological perspectives.
    Bellou S; Baeshen MN; Elazzazy AM; Aggeli D; Sayegh F; Aggelis G
    Biotechnol Adv; 2014 Dec; 32(8):1476-93. PubMed ID: 25449285
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An improved high-throughput Nile red fluorescence assay for estimating intracellular lipids in a variety of yeast species.
    Sitepu IR; Ignatia L; Franz AK; Wong DM; Faulina SA; Tsui M; Kanti A; Boundy-Mills K
    J Microbiol Methods; 2012 Nov; 91(2):321-8. PubMed ID: 22985718
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nile red: a selective fluorescent stain for intracellular lipid droplets.
    Greenspan P; Mayer EP; Fowler SD
    J Cell Biol; 1985 Mar; 100(3):965-73. PubMed ID: 3972906
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation of intracellular lipid bodies in Chlamydomonas reinhardtii strains by flow cytometry.
    Velmurugan N; Sung M; Yim SS; Park MS; Yang JW; Jeong KJ
    Bioresour Technol; 2013 Jun; 138():30-7. PubMed ID: 23612159
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The use of fluorescent Nile red and BODIPY for lipid measurement in microalgae.
    Rumin J; Bonnefond H; Saint-Jean B; Rouxel C; Sciandra A; Bernard O; Cadoret JP; Bougaran G
    Biotechnol Biofuels; 2015; 8():42. PubMed ID: 25788982
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantification of Lipid Abundance and Evaluation of Lipid Distribution in Caenorhabditis elegans by Nile Red and Oil Red O Staining.
    Escorcia W; Ruter DL; Nhan J; Curran SP
    J Vis Exp; 2018 Mar; (133):. PubMed ID: 29553519
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lactic acid fermented microalgae and cyanobacteria as a new source of lipid reducing compounds: assessment through zebrafish Nile red fat metabolism assay and untargeted metabolomics.
    Martelli F; Bernini V; Neviani E; Vasconcelos V; Urbatzka R
    Food Funct; 2024 May; 15(10):5554-5565. PubMed ID: 38712867
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.