These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 29372731)

  • 1. Computational analysis of carbohydrate recognition based on hybrid QM/MM modeling: a case study of norovirus capsid protein in complex with Lewis antigen.
    Ishida T
    Phys Chem Chem Phys; 2018 Feb; 20(7):4652-4665. PubMed ID: 29372731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational modeling of carbohydrate-recognition process in E-selectin complex: structural mapping of sialyl Lewis X onto ab initio QM/MM free energy surface.
    Ishida T
    J Phys Chem B; 2010 Mar; 114(11):3950-64. PubMed ID: 20078087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human noroviruses' fondness for histo-blood group antigens.
    Singh BK; Leuthold MM; Hansman GS
    J Virol; 2015 Feb; 89(4):2024-40. PubMed ID: 25428879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epitope mapping of histo blood group antigens bound to norovirus VLPs using STD NMR experiments reveals fine details of molecular recognition.
    Fiege B; Leuthold M; Parra F; Dalton KP; Meloncelli PJ; Lowary TL; Peters T
    Glycoconj J; 2017 Oct; 34(5):679-689. PubMed ID: 28823097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational studies on the interaction of ABO-active saccharides with the norovirus VA387 capsid protein can explain experimental binding data.
    Koppisetty CA; Nasir W; Strino F; Rydell GE; Larson G; Nyholm PG
    J Comput Aided Mol Des; 2010 May; 24(5):423-31. PubMed ID: 20407802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanobodies targeting norovirus capsid reveal functional epitopes and potential mechanisms of neutralization.
    Koromyslova AD; Hansman GS
    PLoS Pathog; 2017 Nov; 13(11):e1006636. PubMed ID: 29095961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural basis for the recognition of blood group trisaccharides by norovirus.
    Cao S; Lou Z; Tan M; Chen Y; Liu Y; Zhang Z; Zhang XC; Jiang X; Li X; Rao Z
    J Virol; 2007 Jun; 81(11):5949-57. PubMed ID: 17392366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lewis fucose is a key moiety for the recognition of histo-blood group antigens by GI.9 norovirus, as revealed by structural analysis.
    Kimura-Someya T; Kato-Murayama M; Katsura K; Sakai N; Murayama K; Hanada K; Shirouzu M; Someya Y
    FEBS Open Bio; 2022 Mar; 12(3):560-570. PubMed ID: 35038379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lewis histo-blood group α1,3/α1,4 fucose residues may both mediate binding to GII.4 noroviruses.
    Nasir W; Frank M; Koppisetty CA; Larson G; Nyholm PG
    Glycobiology; 2012 Sep; 22(9):1163-72. PubMed ID: 22589081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The p domain of norovirus capsid protein forms a subviral particle that binds to histo-blood group antigen receptors.
    Tan M; Jiang X
    J Virol; 2005 Nov; 79(22):14017-30. PubMed ID: 16254337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural basis for the recognition of Lewis antigens by genogroup I norovirus.
    Kubota T; Kumagai A; Ito H; Furukawa S; Someya Y; Takeda N; Ishii K; Wakita T; Narimatsu H; Shirato H
    J Virol; 2012 Oct; 86(20):11138-50. PubMed ID: 22855491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human norovirus GII.4(MI001) P dimer binds fucosylated and sialylated carbohydrates.
    Wegener H; Mallagaray Á; Schöne T; Peters T; Lockhauserbäumer J; Yan H; Uetrecht C; Hansman GS; Taube S
    Glycobiology; 2017 Nov; 27(11):1027-1037. PubMed ID: 28973640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complete nucleotide sequence analysis of the norovirus GII.17: A newly emerging and dominant variant in China, 2015.
    Wang HB; Wang Q; Zhao JH; Tu CN; Mo QH; Lin JC; Yang Z
    Infect Genet Evol; 2016 Mar; 38():47-53. PubMed ID: 26687061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbohydrate-binding proteins: Dissecting ligand structures through solvent environment occupancy.
    Gauto DF; Di Lella S; Guardia CM; Estrin DA; Martí MA
    J Phys Chem B; 2009 Jun; 113(25):8717-24. PubMed ID: 19485380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural analysis of a feline norovirus protruding domain.
    Singh BK; Glatt S; Ferrer JL; Koromyslova AD; Leuthold MM; Dunder J; Hansman GS
    Virology; 2015 Jan; 474():181-5. PubMed ID: 25463616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Norovirus-binding proteins recovered from activated sludge micro-organisms with an affinity to a noroviral capsid peptide.
    Sano D; Wada K; Imai T; Masago Y; Omura T
    J Appl Microbiol; 2010 Dec; 109(6):1923-8. PubMed ID: 20735509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The molecular mechanism of sulfated carbohydrate recognition by the cysteine-rich domain of mannose receptor.
    Liu Y; Misulovin Z; Bjorkman PJ
    J Mol Biol; 2001 Jan; 305(3):481-90. PubMed ID: 11152606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Norovirus drug candidates that inhibit viral capsid attachment to human histo-blood group antigens.
    Ali ES; Rajapaksha H; Carr JM; Petrovsky N
    Antiviral Res; 2016 Sep; 133():14-22. PubMed ID: 27421712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic analysis and homology modeling of capsid protein of norovirus GII.14.
    Chan-It W; Thongprachum A; Okitsu S; Mizuguchi M; Ushijima H
    J Med Virol; 2014 Feb; 86(2):329-34. PubMed ID: 24009213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The P domain of norovirus capsid protein forms dimer and binds to histo-blood group antigen receptors.
    Tan M; Hegde RS; Jiang X
    J Virol; 2004 Jun; 78(12):6233-42. PubMed ID: 15163716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.