These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 29372732)

  • 1. The fold preference and thermodynamic stability of α-synuclein fibrils is encoded in the non-amyloid-β component region.
    Xu L; Bhattacharya S; Thompson D
    Phys Chem Chem Phys; 2018 Feb; 20(6):4502-4512. PubMed ID: 29372732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NMR unveils an N-terminal interaction interface on acetylated-α-synuclein monomers for recruitment to fibrils.
    Yang X; Wang B; Hoop CL; Williams JK; Baum J
    Proc Natl Acad Sci U S A; 2021 May; 118(18):. PubMed ID: 33903234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. β-Turn exchanges in the α-synuclein segment 44-TKEG-47 reveal high sequence fidelity requirements of amyloid fibril elongation.
    Agerschou ED; Schützmann MP; Reppert N; Wördehoff MM; Shaykhalishahi H; Buell AK; Hoyer W
    Biophys Chem; 2021 Feb; 269():106519. PubMed ID: 33333378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural packing of the non-amyloid component core domain in α-synuclein plays a role in the stability of the fibrils.
    Abramov-Harpaz K; Lan-Mark S; Miller Y
    Biophys Chem; 2024 Jul; 310():107239. PubMed ID: 38663121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. C-Terminal Truncated α-Synuclein Fibrils Contain Strongly Twisted β-Sheets.
    Iyer A; Roeters SJ; Kogan V; Woutersen S; Claessens MMAE; Subramaniam V
    J Am Chem Soc; 2017 Nov; 139(43):15392-15400. PubMed ID: 28968082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coupling of the non-amyloid-component (NAC) domain and the KTK(E/Q)GV repeats stabilize the α-synuclein fibrils.
    Xu L; Nussinov R; Ma B
    Eur J Med Chem; 2016 Oct; 121():841-850. PubMed ID: 26873872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The hot sites of α-synuclein in amyloid fibril formation.
    Khammari A; Arab SS; Ejtehadi MR
    Sci Rep; 2020 Jul; 10(1):12175. PubMed ID: 32699326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structures and free energy landscapes of the A53T mutant-type α-synuclein protein and impact of A53T mutation on the structures of the wild-type α-synuclein protein with dynamics.
    Coskuner O; Wise-Scira O
    ACS Chem Neurosci; 2013 Jul; 4(7):1101-13. PubMed ID: 23607785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-Amyloid-β Component of Human α-Synuclein Oligomers Induces Formation of New Aβ Oligomers: Insight into the Mechanisms That Link Parkinson's and Alzheimer's Diseases.
    Atsmon-Raz Y; Miller Y
    ACS Chem Neurosci; 2016 Jan; 7(1):46-55. PubMed ID: 26479553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissecting the Self-assembly Dynamics of Imperfect Repeats in α-Synuclein.
    Huang F; Wang Y; Zhang Y; Wang C; Lian J; Ding F; Sun Y
    J Chem Inf Model; 2023 Jun; 63(11):3591-3600. PubMed ID: 37253119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of the in vivo induction and transmission of α-synuclein pathology by mutant α-synuclein fibril seeds in transgenic mice.
    Rutherford NJ; Dhillon JS; Riffe CJ; Howard JK; Brooks M; Giasson BI
    Hum Mol Genet; 2017 Dec; 26(24):4906-4915. PubMed ID: 29036344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structures of the E46K mutant-type α-synuclein protein and impact of E46K mutation on the structures of the wild-type α-synuclein protein.
    Wise-Scira O; Dunn A; Aloglu AK; Sakallioglu IT; Coskuner O
    ACS Chem Neurosci; 2013 Mar; 4(3):498-508. PubMed ID: 23374074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of the acidic domain of α-synuclein in amyloid fibril formation: a molecular dynamics study.
    Park S; Yoon J; Jang S; Lee K; Shin S
    J Biomol Struct Dyn; 2016; 34(2):376-83. PubMed ID: 25869255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amyloid fibrils prepared using an acetylated and methyl amidated peptide model of the α-Synuclein NAC 71-82 amino acid stretch contain an additional cross-β structure also found in prion proteins.
    Näsström T; Andersson PO; Lejon C; Karlsson BCG
    Sci Rep; 2019 Nov; 9(1):15949. PubMed ID: 31685848
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of truncation on prion-like properties of α-synuclein.
    Terada M; Suzuki G; Nonaka T; Kametani F; Tamaoka A; Hasegawa M
    J Biol Chem; 2018 Sep; 293(36):13910-13920. PubMed ID: 30030380
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A pH-dependent switch promotes β-synuclein fibril formation via glutamate residues.
    Moriarty GM; Olson MP; Atieh TB; Janowska MK; Khare SD; Baum J
    J Biol Chem; 2017 Sep; 292(39):16368-16379. PubMed ID: 28710275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intrinsic Conformational Preferences and Interactions in α-Synuclein Fibrils: Insights from Molecular Dynamics Simulations.
    Ilie IM; Nayar D; den Otter WK; van der Vegt NFA; Briels WJ
    J Chem Theory Comput; 2018 Jun; 14(6):3298-3310. PubMed ID: 29715424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential of mean force and molecular dynamics study on the transient interactions between α and β synuclein that drive inhibition of α-synuclein aggregation.
    Sanjeev A; Sahu RK; Mattaparthi VSK
    J Biomol Struct Dyn; 2017 Nov; 35(15):3342-3353. PubMed ID: 27809690
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased Dynamics of α-Synuclein Fibrils by β-Synuclein Leads to Reduced Seeding and Cytotoxicity.
    Yang X; Williams JK; Yan R; Mouradian MM; Baum J
    Sci Rep; 2019 Nov; 9(1):17579. PubMed ID: 31772376
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural analyses and force fields comparison for NACore (68-78) and SubNACore (69-77) fibril segments of Parkinson's disease.
    Alıcı H
    J Mol Model; 2020 May; 26(6):132. PubMed ID: 32394304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.