BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 29373024)

  • 1. Translocation of Bioactive Molecules through Carbon Nanotubes Embedded in the Lipid Membrane.
    Sahoo AK; Kanchi S; Mandal T; Dasgupta C; Maiti PK
    ACS Appl Mater Interfaces; 2018 Feb; 10(7):6168-6179. PubMed ID: 29373024
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TRPV1 channel as a target for cancer therapy using CNT-based drug delivery systems.
    Ortega-Guerrero A; Espinosa-Duran JM; Velasco-Medina J
    Eur Biophys J; 2016 Jul; 45(5):423-33. PubMed ID: 26872481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of nanopores with ultrashort single-walled carbon nanotubes inserted in a lipid bilayer.
    Liu L; Xie J; Li T; Wu HC
    Nat Protoc; 2015 Nov; 10(11):1670-8. PubMed ID: 26426500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Translocation and encapsulation of siRNA inside carbon nanotubes.
    Mogurampelly S; Maiti PK
    J Chem Phys; 2013 Jan; 138(3):034901. PubMed ID: 23343299
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhance the efficiency of 5-fluorouracil targeted delivery by using a prodrug approach as a novel strategy for prolonged circulation time and improved permeation.
    Pasban S; Raissi H; Pakdel M; Farzad F
    Int J Pharm; 2019 Sep; 568():118491. PubMed ID: 31276765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipid Bilayer Membrane Perturbation by Embedded Nanopores: A Simulation Study.
    Garcia-Fandiño R; Piñeiro Á; Trick JL; Sansom MS
    ACS Nano; 2016 Mar; 10(3):3693-701. PubMed ID: 26943498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA fragment translocation through the lipid membrane assisted by carbon nanotube.
    Liang L; Zhang Y; Kong Z; Liu F; Shen JW; He Z; Wang H
    Int J Pharm; 2020 Jan; 574():118921. PubMed ID: 31812796
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane perturbation by carbon nanotube insertion: pathways to internalization.
    Lelimousin M; Sansom MS
    Small; 2013 Nov; 9(21):3639-46. PubMed ID: 23418066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrashort single-walled carbon nanotubes in a lipid bilayer as a new nanopore sensor.
    Liu L; Yang C; Zhao K; Li J; Wu HC
    Nat Commun; 2013; 4():2989. PubMed ID: 24352224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Sodium Dodecyl Sulfate Adsorption on the Behavior of Water inside Single Walled Carbon Nanotubes with Dissipative Particle Dynamics Simulation.
    Vo MD; Papavassiliou DV
    Molecules; 2016 Apr; 21(4):500. PubMed ID: 27092476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting doxorubicin drug delivery by single-walled carbon nanotube through cell membrane in the absence and presence of nicotine molecules: a molecular dynamics simulation study.
    Pakdel M; Raissi H; Shahabi M
    J Biomol Struct Dyn; 2020 Mar; 38(5):1488-1498. PubMed ID: 31119969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of chirality and length on the penetrability of single-walled carbon nanotubes into lipid bilayer cell membranes.
    Skandani AA; Zeineldin R; Al-Haik M
    Langmuir; 2012 May; 28(20):7872-9. PubMed ID: 22545729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Encapsulation of an anticancer drug Isatin inside a host nano-vehicle SWCNT: a molecular dynamics simulation.
    Dehaghani MZ; Yousefi F; Seidi F; Bagheri B; Mashhadzadeh AH; Naderi G; Esmaeili A; Abida O; Habibzadeh S; Saeb MR; Rybachuk M
    Sci Rep; 2021 Sep; 11(1):18753. PubMed ID: 34548596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and electrical properties of DNA nanotubes embedded in lipid bilayer membranes.
    Joshi H; Maiti PK
    Nucleic Acids Res; 2018 Mar; 46(5):2234-2242. PubMed ID: 29136243
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Embedded single-walled carbon nanotubes locally perturb DOPC phospholipid bilayers.
    Parthasarathi R; Tummala NR; Striolo A
    J Phys Chem B; 2012 Oct; 116(42):12769-82. PubMed ID: 23025795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tension-Induced Translocation of an Ultrashort Carbon Nanotube through a Phospholipid Bilayer.
    Guo Y; Werner M; Seemann R; Baulin VA; Fleury JB
    ACS Nano; 2018 Dec; 12(12):12042-12049. PubMed ID: 30452223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupling molecular dynamics simulations with experiments for the rational design of indolicidin-analogous antimicrobial peptides.
    Tsai CW; Hsu NY; Wang CH; Lu CY; Chang Y; Tsai HH; Ruaan RC
    J Mol Biol; 2009 Sep; 392(3):837-54. PubMed ID: 19576903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insertion of short amino-functionalized single-walled carbon nanotubes into phospholipid bilayer occurs by passive diffusion.
    Kraszewski S; Bianco A; Tarek M; Ramseyer C
    PLoS One; 2012; 7(7):e40703. PubMed ID: 22815794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supported lipid bilayer/carbon nanotube hybrids.
    Zhou X; Moran-Mirabal JM; Craighead HG; McEuen PL
    Nat Nanotechnol; 2007 Mar; 2(3):185-90. PubMed ID: 18654251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the impact of nanotube diameter on biomembrane indentation - Computer simulations study.
    Raczyński P; Górny K; Raczyńska V; Pabiszczak M; Dendzik Z; Gburski Z
    Biochim Biophys Acta Biomembr; 2018 Feb; 1860(2):310-318. PubMed ID: 29100891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.