These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 2937313)

  • 1. Effects of oligomycin and acidosis on rates of ATP depletion in ischemic heart muscle.
    Rouslin W; Erickson JL; Solaro RJ
    Am J Physiol; 1986 Mar; 250(3 Pt 2):H503-8. PubMed ID: 2937313
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ATP depletion and mitochondrial functional loss during ischemia in slow and fast heart-rate hearts.
    Rouslin W; Broge CW; Grupp IL
    Am J Physiol; 1990 Dec; 259(6 Pt 2):H1759-66. PubMed ID: 2148059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protonic inhibition of the mitochondrial oligomycin-sensitive adenosine 5'-triphosphatase in ischemic and autolyzing cardiac muscle. Possible mechanism for the mitigation of ATP hydrolysis under nonenergizing conditions.
    Rouslin W
    J Biol Chem; 1983 Aug; 258(16):9657-61. PubMed ID: 6224783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Myocardial acidosis and the mitigation of tissue ATP depletion in ischemic cardiac muscle: the role of the mitochondrial ATPase.
    Rouslin W
    Adv Exp Med Biol; 1986; 194():355-73. PubMed ID: 2944359
    [No Abstract]   [Full Text] [Related]  

  • 5. Effect of inhibition of the mitochondrial ATPase on net myocardial ATP in total ischemia.
    Jennings RB; Reimer KA; Steenbergen C
    J Mol Cell Cardiol; 1991 Dec; 23(12):1383-95. PubMed ID: 1839801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Factors affecting the loss of mitochondrial function during zero-flow ischemia (autolysis) in slow and fast heart-rate hearts.
    Rouslin W
    J Mol Cell Cardiol; 1988 Nov; 20(11):999-1007. PubMed ID: 2976846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of reversible ischemia on the activity of the mitochondrial ATPase: relationship to ischemic preconditioning.
    Vander Heide RS; Hill ML; Reimer KA; Jennings RB
    J Mol Cell Cardiol; 1996 Jan; 28(1):103-12. PubMed ID: 8745218
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Factors affecting the reactivation of the oligomycin-sensitive adenosine 5'-triphosphatase and the release of ATPase inhibitor protein during the re-energization of intact mitochondria from ischemic cardiac muscle.
    Rouslin W
    J Biol Chem; 1987 Mar; 262(8):3472-6. PubMed ID: 2950098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protonic inhibition of the mitochondrial adenosine 5'-triphosphatase in ischemic cardiac muscle. Reversible binding of the ATPase inhibitor protein to the mitochondrial ATPase during ischemia.
    Rouslin W; Pullman ME
    J Mol Cell Cardiol; 1987 Jul; 19(7):661-8. PubMed ID: 2960823
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mitochondrial adenosine 5'-triphosphatase in slow and fast heart rate hearts.
    Rouslin W
    Am J Physiol; 1987 Mar; 252(3 Pt 2):H622-7. PubMed ID: 2950775
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reversible ischemic inhibition of F(1)F(0)-ATPase in rat and human myocardium.
    Ylitalo K; Ala-Rämi A; Vuorinen K; Peuhkurinen K; Lepojärvi M; Kaukoranta P; Kiviluoma K; Hassinen I
    Biochim Biophys Acta; 2001 Apr; 1504(2-3):329-39. PubMed ID: 11245796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Factors affecting the loss of mitochondrial function in autolyzing cardiac muscle.
    Rouslin W; Erickson JL
    J Mol Cell Cardiol; 1986 Nov; 18(11):1187-95. PubMed ID: 3795279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Factors affecting the reactivation of the mitochondrial adenosine 5'-triphosphatase and the release of ATPase inhibitor protein during and following the reenergization of mitochondria from ischemic cardiac muscle.
    Rouslin W; Broge CW
    Arch Biochem Biophys; 1989 Dec; 275(2):385-94. PubMed ID: 2531991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of ATP conservation during ischemia in slow and fast heart rate hearts.
    Rouslin W; Broge CW
    Am J Physiol; 1993 Jan; 264(1 Pt 1):C209-16. PubMed ID: 8430769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconstituted mitochondrial oligomycin-sensitive ATPase (F0F1) with intermediate Pi in equilibrium HOH exchange but no Pi in equilibrium ATP exchange activity.
    Ernster L; Carlsson C; Boyer PD
    FEBS Lett; 1977 Dec; 84(2):283-6. PubMed ID: 145953
    [No Abstract]   [Full Text] [Related]  

  • 16. Photoaffinity cross-linking of oligomycin-sensitive ATPase from beef heart mitochondria by 3'-arylazido-8-azido ATP.
    Schäfer HJ; Mainka L; Rathgeber G; Zimmer G
    Biochem Biophys Res Commun; 1983 Mar; 111(2):732-9. PubMed ID: 6220709
    [No Abstract]   [Full Text] [Related]  

  • 17. Effects of acidosis and ATP depletion on cardiac muscle electron transfer complex I.
    Rouslin W
    J Mol Cell Cardiol; 1991 Oct; 23(10):1127-35. PubMed ID: 1749004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of mitochondrial matrix pH and adenosine 5'-triphosphatase activity during ischemia in slow heart-rate hearts. Role of Pi/H+ symport.
    Rouslin W; Broge CW
    J Biol Chem; 1989 Sep; 264(26):15224-9. PubMed ID: 2527849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The relationship between the bovine heart mitochondrial adenosine triphosphatase, lipophilic compounds, and oligomycin.
    Cunningham CC; George DT
    J Biol Chem; 1975 Mar; 250(6):2036-44. PubMed ID: 123247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of energy production in cardiac muscle: effects of ischemia in acidosis.
    Williamson JR; Steenbergen C; Deleeuw G; Barlow C
    Recent Adv Stud Cardiac Struct Metab; 1976 May 26-29; 11():521-31. PubMed ID: 22905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.