These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 29373231)
1. Automatic recognition of gait patterns in human motor disorders using machine learning: A review. Figueiredo J; Santos CP; Moreno JC Med Eng Phys; 2018 Mar; 53():1-12. PubMed ID: 29373231 [TBL] [Abstract][Full Text] [Related]
2. A machine learning approach for automated recognition of movement patterns using basic, kinetic and kinematic gait data. Begg R; Kamruzzaman J J Biomech; 2005 Mar; 38(3):401-8. PubMed ID: 15652537 [TBL] [Abstract][Full Text] [Related]
3. Feature extraction via KPCA for classification of gait patterns. Wu J; Wang J; Liu L Hum Mov Sci; 2007 Jun; 26(3):393-411. PubMed ID: 17509708 [TBL] [Abstract][Full Text] [Related]
4. Wearable Sensor Data to Track Subject-Specific Movement Patterns Related to Clinical Outcomes Using a Machine Learning Approach. Kobsar D; Ferber R Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30150560 [TBL] [Abstract][Full Text] [Related]
5. A Machine Learning Approach to Automated Gait Analysis for the Noldus Catwalk System. Frohlich H; Claes K; De Wolf C; Van Damme X; Michel A IEEE Trans Biomed Eng; 2018 May; 65(5):1133-1139. PubMed ID: 28858780 [TBL] [Abstract][Full Text] [Related]
6. Support vector machines for automated gait classification. Begg RK; Palaniswami M; Owen B IEEE Trans Biomed Eng; 2005 May; 52(5):828-38. PubMed ID: 15887532 [TBL] [Abstract][Full Text] [Related]
7. Cognitive driven gait freezing phase detection and classification for neuro-rehabilitated patients using machine learning algorithms. Khamparia A; Gupta D; Maashi M; Mengash HA J Neurosci Methods; 2024 Sep; 409():110183. PubMed ID: 38834145 [TBL] [Abstract][Full Text] [Related]
8. Effects of personal and task constraints on limb coordination during walking: A systematic review and meta-analysis. Shafizadeh M; Crowther R; Wheat J; Davids K Clin Biomech (Bristol); 2019 Jan; 61():1-10. PubMed ID: 30415107 [TBL] [Abstract][Full Text] [Related]
9. Machine Learning Approaches for Dementia Detection Through Speech and Gait Analysis: A Systematic Literature Review. Al-Hammadi M; Fleyeh H; Åberg AC; Halvorsen K; Thomas I J Alzheimers Dis; 2024; 100(1):1-27. PubMed ID: 38848181 [TBL] [Abstract][Full Text] [Related]
10. An Automated Classification of Pathological Gait Using Unobtrusive Sensing Technology. Dolatabadi E; Taati B; Mihailidis A IEEE Trans Neural Syst Rehabil Eng; 2017 Dec; 25(12):2336-2346. PubMed ID: 28792901 [TBL] [Abstract][Full Text] [Related]
11. Classification of Parkinson's Disease Gait Using Spatial-Temporal Gait Features. Wahid F; Begg RK; Hass CJ; Halgamuge S; Ackland DC IEEE J Biomed Health Inform; 2015 Nov; 19(6):1794-802. PubMed ID: 26551989 [TBL] [Abstract][Full Text] [Related]
12. Role of Muscle Synergies in Real-Time Classification of Upper Limb Motions using Extreme Learning Machines. Antuvan CW; Bisio F; Marini F; Yen SC; Cambria E; Masia L J Neuroeng Rehabil; 2016 Aug; 13(1):76. PubMed ID: 27527511 [TBL] [Abstract][Full Text] [Related]
13. High-accuracy automatic classification of Parkinsonian tremor severity using machine learning method. Jeon H; Lee W; Park H; Lee HJ; Kim SK; Kim HB; Jeon B; Park KS Physiol Meas; 2017 Oct; 38(11):1980-1999. PubMed ID: 28933707 [TBL] [Abstract][Full Text] [Related]
14. Comparative performance of machine learning models for the classification of human gait. Thakur D; Lalwani P Biomed Phys Eng Express; 2024 Jan; 10(2):. PubMed ID: 38128132 [TBL] [Abstract][Full Text] [Related]
15. Automatic recognition of gait patterns exhibiting patellofemoral pain syndrome using a support vector machine approach. Lai DT; Levinger P; Begg RK; Gilleard WL; Palaniswami M IEEE Trans Inf Technol Biomed; 2009 Sep; 13(5):810-7. PubMed ID: 19447723 [TBL] [Abstract][Full Text] [Related]
16. A machine learning approach to detect changes in gait parameters following a fatiguing occupational task. Baghdadi A; Megahed FM; Esfahani ET; Cavuoto LA Ergonomics; 2018 Aug; 61(8):1116-1129. PubMed ID: 29452575 [TBL] [Abstract][Full Text] [Related]
17. Automatic machine-learning based identification of jogging periods from accelerometer measurements of adolescents under field conditions. Zdravevski E; Risteska Stojkoska B; Standl M; Schulz H PLoS One; 2017; 12(9):e0184216. PubMed ID: 28880923 [TBL] [Abstract][Full Text] [Related]
18. A Fusion-Assisted Multi-Stream Deep Learning and ESO-Controlled Newton-Raphson-Based Feature Selection Approach for Human Gait Recognition. Jahangir F; Khan MA; Alhaisoni M; Alqahtani A; Alsubai S; Sha M; Al Hejaili A; Cha JH Sensors (Basel); 2023 Mar; 23(5):. PubMed ID: 36904963 [TBL] [Abstract][Full Text] [Related]
19. PCA-based polling strategy in machine learning framework for coronary artery disease risk assessment in intravascular ultrasound: A link between carotid and coronary grayscale plaque morphology. Araki T; Ikeda N; Shukla D; Jain PK; Londhe ND; Shrivastava VK; Banchhor SK; Saba L; Nicolaides A; Shafique S; Laird JR; Suri JS Comput Methods Programs Biomed; 2016 May; 128():137-58. PubMed ID: 27040838 [TBL] [Abstract][Full Text] [Related]
20. "You can tell by the way I use my walk." Predicting the presence of cognitive load with gait measurements. Dasgupta P; VanSwearingen J; Sejdic E Biomed Eng Online; 2018 Sep; 17(1):122. PubMed ID: 30208897 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]