These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 29373231)

  • 21. Predicting ground contact events for a continuum of gait types: An application of targeted machine learning using principal component analysis.
    Osis ST; Hettinga BA; Ferber R
    Gait Posture; 2016 May; 46():86-90. PubMed ID: 27131183
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Multiple Regression Approach to Normalization of Spatiotemporal Gait Features.
    Wahid F; Begg R; Lythgo N; Hass CJ; Halgamuge S; Ackland DC
    J Appl Biomech; 2016 Apr; 32(2):128-39. PubMed ID: 26426798
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Computer aided analysis of gait patterns in patients with acute anterior cruciate ligament injury.
    Christian J; Kröll J; Strutzenberger G; Alexander N; Ofner M; Schwameder H
    Clin Biomech (Bristol); 2016 Mar; 33():55-60. PubMed ID: 26945722
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Systematic Comparison of the Influence of Different Data Preprocessing Methods on the Performance of Gait Classifications Using Machine Learning.
    Burdack J; Horst F; Giesselbach S; Hassan I; Daffner S; Schöllhorn WI
    Front Bioeng Biotechnol; 2020; 8():260. PubMed ID: 32351945
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Support vector machine for classification of walking conditions of persons after stroke with dropped foot.
    Lau HY; Tong KY; Zhu H
    Hum Mov Sci; 2009 Aug; 28(4):504-14. PubMed ID: 19428134
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Automated classification of neurological disorders of gait using spatio-temporal gait parameters.
    Pradhan C; Wuehr M; Akrami F; Neuhaeusser M; Huth S; Brandt T; Jahn K; Schniepp R
    J Electromyogr Kinesiol; 2015 Apr; 25(2):413-22. PubMed ID: 25725811
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Feature reduction and multi-classification of different assistive devices according to the gait pattern.
    Martins M; Santos C; Costa L; Frizera A
    Disabil Rehabil Assist Technol; 2016; 11(3):202-18. PubMed ID: 26337072
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Machine-learning-based children's pathological gait classification with low-cost gait-recognition system.
    Xu L; Chen J; Wang F; Chen Y; Yang W; Yang C
    Biomed Eng Online; 2021 Jun; 20(1):62. PubMed ID: 34158070
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Automatic plankton image classification combining multiple view features via multiple kernel learning.
    Zheng H; Wang R; Yu Z; Wang N; Gu Z; Zheng B
    BMC Bioinformatics; 2017 Dec; 18(Suppl 16):570. PubMed ID: 29297354
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pattern Classification of Instantaneous Cognitive Task-load Through GMM Clustering, Laplacian Eigenmap, and Ensemble SVMs.
    Zhang J; Yin Z; Wang R
    IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(4):947-965. PubMed ID: 27164601
    [TBL] [Abstract][Full Text] [Related]  

  • 31. DrugMiner: comparative analysis of machine learning algorithms for prediction of potential druggable proteins.
    Jamali AA; Ferdousi R; Razzaghi S; Li J; Safdari R; Ebrahimie E
    Drug Discov Today; 2016 May; 21(5):718-24. PubMed ID: 26821132
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Machine learning based sample extraction for automatic speech recognition using dialectal Assamese speech.
    Agarwalla S; Sarma KK
    Neural Netw; 2016 Jun; 78():97-111. PubMed ID: 26783204
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Does expert knowledge improve automatic probabilistic classification of gait joint motion patterns in children with cerebral palsy?
    De Laet T; Papageorgiou E; Nieuwenhuys A; Desloovere K
    PLoS One; 2017; 12(6):e0178378. PubMed ID: 28570616
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computer-assisted liver graft steatosis assessment via learning-based texture analysis.
    Moccia S; Mattos LS; Patrini I; Ruperti M; Poté N; Dondero F; Cauchy F; Sepulveda A; Soubrane O; De Momi E; Diaspro A; Cesaretti M
    Int J Comput Assist Radiol Surg; 2018 Sep; 13(9):1357-1367. PubMed ID: 29796834
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns.
    De Martino F; Valente G; Staeren N; Ashburner J; Goebel R; Formisano E
    Neuroimage; 2008 Oct; 43(1):44-58. PubMed ID: 18672070
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Human gait recognition via deterministic learning.
    Zeng W; Wang C
    Neural Netw; 2012 Nov; 35():92-102. PubMed ID: 22982093
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Marker-based classification of young-elderly gait pattern differences via direct PCA feature extraction and SVMs.
    Eskofier BM; Federolf P; Kugler PF; Nigg BM
    Comput Methods Biomech Biomed Engin; 2013 Apr; 16(4):435-42. PubMed ID: 22149087
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Feature Selection for Motor Imagery EEG Classification Based on Firefly Algorithm and Learning Automata.
    Liu A; Chen K; Liu Q; Ai Q; Xie Y; Chen A
    Sensors (Basel); 2017 Nov; 17(11):. PubMed ID: 29117100
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Applying machine learning to gait analysis data for disease identification.
    Joyseeree R; Abou Sabha R; Mueller H
    Stud Health Technol Inform; 2015; 210():850-4. PubMed ID: 25991275
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optimizing a machine learning based glioma grading system using multi-parametric MRI histogram and texture features.
    Zhang X; Yan LF; Hu YC; Li G; Yang Y; Han Y; Sun YZ; Liu ZC; Tian Q; Han ZY; Liu LD; Hu BQ; Qiu ZY; Wang W; Cui GB
    Oncotarget; 2017 Jul; 8(29):47816-47830. PubMed ID: 28599282
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.